Biology, asked by sukhrajsaroya, 11 months ago

write a note on plant hormones? Give its functions.

Answers

Answered by sanskruti94
0
I hope it is helpful for you
Attachments:

sanskruti94: mark as a brainlist answer
sanskruti94: plz plz please yaar
sukhrajsaroya: kyu
sanskruti94: yaar kar na
sukhrajsaroya: Brainlist krne se kya mil jayega
Answered by rudraksh63
0
A hormone is any chemical produced in one part of the body that has a target elsewhere in the body. ...

Auxin also plays a role in maintaining apical dominance. ...

Gibberellins promote stem elongation. ...

Cytokinins promote cell division. ...

Abscisic Acid promotes seed dormancy by inhibiting cell growth.

Carbon, Hydrogen, and Oxygen are considered the essential elements. Nitrogen, Potassium, and Phosphorous are obtained from the soil and are the primary macronutrients. Calcium, Magnesium, and Sulfur are the secondary macronutrients needed in lesser quantity. The micronutrients, needed in very small quantities and toxic in large quantities, include Iron, Manganese, Copper, Zinc, Boron, and Chlorine. A complete fertilizer provides all three primary macronutrients and some of the secondary and micronutrients. The label of the fertilizer will list numbers, for example 5-10-5, which refer to the percent by weight of the primary macronutrients.

Soils play a role

Soil is weathered, decomposed rock and mineral (geological) fragments mixed with air and water. Fertile soil contains the nutrients in a readily available form that plants require for growth. The roots of the plant act as miners moving through the soil and bringing needed minerals into the plant roots.

 

Structure of soil, indicating presence of bacteria, inorganic, and organic matter, water, and air. Image from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.

Plants use these minerals in:

Structural components in carbohydrates and proteins

Organic molecules used in metabolism, such as the Magnesium in chlorophyll and the Phosphorous found in ATP

Enzyme activators like potassium, which activates possibly fifty enzymes

Maintaining osmotic balance.


Development of a root nodule, a place in the roots of certain plants, most notably legumes (the pea family), where bacteria live symbiotically with the plant. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.

All the nitrogen in living systems was at one time processed by these bacteria, who took atmospheric nitrogen (N2) and modified it to a form that living things could utilize (such as NO3 or NO4; or even as ammonia, NH3 in the example shown below).





Pathway for converting (fixing) atmospheric nitrogen, N2, into organic nitrogen, NH3. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.

Not all bacteria utilize the above route of nitrogen fixation. Many that live free in the soil, utilize other chemical pathways.

 





Nitrogen uptake and conversion by various soil bacteria. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.

Roots have extensions of the root epidemal cells known as root hairs. While root hairs greatly enhance the surface area (hence absorbtion surface), the addition of symbiotic mycorrhizae fungi vastly increases the area of the root for absorbing water and minerals from the soil.



Role of the root hairs in increasing the surface area of roots to promote increased uptake of water and minerals from the soil. Image from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.

Water and Mineral Uptake |

Animals have a circulatory system that transports fluids, chemicals, and nutrients around within the animal body. Some plants have an analogous system: the vascular system in vascular plants; trumpet hyphae in bryophytes.

The endodermis has a strip of water-proof material (containing suberin) known as the Casparian strip that forces water through the endodermal cell and in such a way regulates the amount of water getting to the xylem. Only when water concentrations inside the endodermal cell fall below that of the cortex parenchyma cells does water flow into the endodermis and on into the xylem.



Details of the Casparian strip. Image from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.

Xylem and Transport | 

Xylem is the water transporting tissue in plants that is dead when it reaches functional maturity. Tracheids are long, tapered cells of xylem that have end plates on the cells that contain a great many crossbars. Tracheid walls are festooned with pits. Vessels, an improved form of tracheid, have no (or very few) obstructions (crossbars) on the top or bottom of the cell. The functional diameter of vessels is greater than that of tracheids.


mark as brainlist.......
Similar questions