write a partition on the set A={a,b,c,d,e}
Answers
Step-by-step explanation:
Partition of a set, say S, is a collection of n disjoint subsets, say P1, P1, ... Pn that satisfies the following three conditions −
Pi does not contain the empty set.
[ Pi ≠ { ∅ } for all 0 < i ≤ n ]
The union of the subsets must equal the entire original set.
[ P1 ∪ P2 ∪ ... ∪ Pn = S ]
The intersection of any two distinct sets is empty.
[ Pa ∩ Pb = { ∅ }, for a ≠ b where n ≥ a, b ≥ 0 ]
Example
Let S = { a, b, c, d, e, f, g, h }
One probable partitioning is { a }, { b, c, d }, { e, f, g, h }
Another probable partitioning is { a, b }, { c, d }, { e, f, g, h }
Bell Numbers
Bell numbers give the count of the number of ways to partition a set. They are denoted by Bn where n is the cardinality of the set.
Example −
Let S = { 1, 2, 3}, n = |S| = 3
The alternate partitions are −
1. ∅ , { 1, 2, 3 }
2. { 1 } , { 2, 3 }
3. { 1, 2 } , { 3 }
4. { 1, 3 } , { 2 }
5. { 1 } , { 2 } , { 3 }
Hence B3 = 5