Write a polynomial whose zeroes are 1/2, 1 *
Answers
Answered by
2
f(x) = x³ - 2x² - x + 2 whose zeroes are 1 , 2 & - 1
Step-by-step explanation:
polynomial in x whose zeroes are 1,2 and-1
f(x) = (x - 1)(x - 2)(x -(-1))
=> f(x) = (x - 1)(x - 2)(x + 1)
=> f(x) = (x - 2)(x² - 1)
=> f(x) = x³ - x - 2x² + 2
=> f(x) = x³ - 2x² - x + 2
Verification :
f(1) = 1³ - 2*1² - 1 + 2 = 0
f(2) = 2³ - 2*2² - 2+ 2 = 0
f(-1) = (-1)³ - 2*(-1)² - (-1) + 2 = 0
![<!DOCTYPE html><br /><html><br /><head><br /><style><br />body{<br />background-color:rgb(150,150,150);<br />margin-top:100px;<br />margin-left:5%;<br />margin-right:5%;<br />}<br />pre{<br />font-weight:bold;<br />}<br />.large1{<br />color:white;<br />padding:10px 15px 10px 15px;<br />border-radius:20px 0 0 5px ;<br />text-decoration:none;<br />font-weight:bold;<br />}<br />.large2{<br />color:white;<br />padding:10px 15px 10px 15px;<br />border-radius:0 20px 5px 0;<br />text-decoration:none;<br />font-weight:bold;<br />}<br />.small{<br />color:black;<br />border-radius:7px 7px 0 0;<br />padding:11px 7px 10px 7px;<br />text-decoration:none;<br />font-weight:bolder;<br />font-family:Verdana;<br />}<br />@-webkit-keyframes whitePulse<br />{<br />from{background-color:white;-webkit-box-shadow:0 0 30px #333;}<br />50%{background-color:#faebd7;-webkit-box-shadow:0 0 70px #faebd7;}<br />to{background-color:white;-webkit-box-shadow:0 0 50px #333;}<br />}<br />@-webkit-keyframes redPulse<br />{<br />from{background-color:red;-webkit-box-shadow:0 0 18px #333;}<br />50%{background-color:rgb(255,38,38);-webkit-box-shadow:0 0 70px rgb(255,38,38);}<br />to{background-color:red;-webkit-box-shadow:0 0 18px #333;}<br />}<br />@-webkit-keyframes bluePulse<br />{<br />from{background-color:blue;-webkit-box-shadow:0 0 30px #333;}<br />50%{background-color:rgb(21,21,255);-webkit-box-shadow:0 0 150px rgb(10,10,255);}<br />to{background-color:blue;-webkit-box-shadow:0 0 50px #333;}<br />}<br />.white.button{<br />-webkit-animation-name:whitePulse;<br />-webkit-animation-duration:0.2s;<br />-webkit-animation-iteration-count:infinite;<br />}<br />.red.button{<br />-webkit-animation-name:redPulse;<br />-webkit-animation-duration:0.3s;<br />-webkit-animation-iteration-count:infinite;<br />}<br />.blue.button{<br />-webkit-animation-name:bluePulse;<br />-webkit-animation-duration:0.3s;<br />-webkit-animation-iteration-count:infinite;<br />}<br /></style><br /></head><br /><body><br /><div><br /><a class="large1 blue button"> </a><a class="small white button"> POLICE </a><a class="large2 red button"> </a><br /></div><br /><br><br /><br><br /><br><br /><pre><br /></pre><br /></body><br /></html> <!DOCTYPE html><br /><html><br /><head><br /><style><br />body{<br />background-color:rgb(150,150,150);<br />margin-top:100px;<br />margin-left:5%;<br />margin-right:5%;<br />}<br />pre{<br />font-weight:bold;<br />}<br />.large1{<br />color:white;<br />padding:10px 15px 10px 15px;<br />border-radius:20px 0 0 5px ;<br />text-decoration:none;<br />font-weight:bold;<br />}<br />.large2{<br />color:white;<br />padding:10px 15px 10px 15px;<br />border-radius:0 20px 5px 0;<br />text-decoration:none;<br />font-weight:bold;<br />}<br />.small{<br />color:black;<br />border-radius:7px 7px 0 0;<br />padding:11px 7px 10px 7px;<br />text-decoration:none;<br />font-weight:bolder;<br />font-family:Verdana;<br />}<br />@-webkit-keyframes whitePulse<br />{<br />from{background-color:white;-webkit-box-shadow:0 0 30px #333;}<br />50%{background-color:#faebd7;-webkit-box-shadow:0 0 70px #faebd7;}<br />to{background-color:white;-webkit-box-shadow:0 0 50px #333;}<br />}<br />@-webkit-keyframes redPulse<br />{<br />from{background-color:red;-webkit-box-shadow:0 0 18px #333;}<br />50%{background-color:rgb(255,38,38);-webkit-box-shadow:0 0 70px rgb(255,38,38);}<br />to{background-color:red;-webkit-box-shadow:0 0 18px #333;}<br />}<br />@-webkit-keyframes bluePulse<br />{<br />from{background-color:blue;-webkit-box-shadow:0 0 30px #333;}<br />50%{background-color:rgb(21,21,255);-webkit-box-shadow:0 0 150px rgb(10,10,255);}<br />to{background-color:blue;-webkit-box-shadow:0 0 50px #333;}<br />}<br />.white.button{<br />-webkit-animation-name:whitePulse;<br />-webkit-animation-duration:0.2s;<br />-webkit-animation-iteration-count:infinite;<br />}<br />.red.button{<br />-webkit-animation-name:redPulse;<br />-webkit-animation-duration:0.3s;<br />-webkit-animation-iteration-count:infinite;<br />}<br />.blue.button{<br />-webkit-animation-name:bluePulse;<br />-webkit-animation-duration:0.3s;<br />-webkit-animation-iteration-count:infinite;<br />}<br /></style><br /></head><br /><body><br /><div><br /><a class="large1 blue button"> </a><a class="small white button"> POLICE </a><a class="large2 red button"> </a><br /></div><br /><br><br /><br><br /><br><br /><pre><br /></pre><br /></body><br /></html>](https://tex.z-dn.net/?f=%26lt%3B%21DOCTYPE+html%26gt%3B%3Cbr+%2F%3E%26lt%3Bhtml%26gt%3B%3Cbr+%2F%3E%26lt%3Bhead%26gt%3B%3Cbr+%2F%3E%26lt%3Bstyle%26gt%3B%3Cbr+%2F%3Ebody%7B%3Cbr+%2F%3Ebackground-color%3Argb%28150%2C150%2C150%29%3B%3Cbr+%2F%3Emargin-top%3A100px%3B%3Cbr+%2F%3Emargin-left%3A5%25%3B%3Cbr+%2F%3Emargin-right%3A5%25%3B%3Cbr+%2F%3E%7D%3Cbr+%2F%3Epre%7B%3Cbr+%2F%3Efont-weight%3Abold%3B%3Cbr+%2F%3E%7D%3Cbr+%2F%3E.large1%7B%3Cbr+%2F%3Ecolor%3Awhite%3B%3Cbr+%2F%3Epadding%3A10px+15px+10px+15px%3B%3Cbr+%2F%3Eborder-radius%3A20px+0+0+5px+%3B%3Cbr+%2F%3Etext-decoration%3Anone%3B%3Cbr+%2F%3Efont-weight%3Abold%3B%3Cbr+%2F%3E%7D%3Cbr+%2F%3E.large2%7B%3Cbr+%2F%3Ecolor%3Awhite%3B%3Cbr+%2F%3Epadding%3A10px+15px+10px+15px%3B%3Cbr+%2F%3Eborder-radius%3A0+20px+5px+0%3B%3Cbr+%2F%3Etext-decoration%3Anone%3B%3Cbr+%2F%3Efont-weight%3Abold%3B%3Cbr+%2F%3E%7D%3Cbr+%2F%3E.small%7B%3Cbr+%2F%3Ecolor%3Ablack%3B%3Cbr+%2F%3Eborder-radius%3A7px+7px+0+0%3B%3Cbr+%2F%3Epadding%3A11px+7px+10px+7px%3B%3Cbr+%2F%3Etext-decoration%3Anone%3B%3Cbr+%2F%3Efont-weight%3Abolder%3B%3Cbr+%2F%3Efont-family%3AVerdana%3B%3Cbr+%2F%3E%7D%3Cbr+%2F%3E%40-webkit-keyframes+whitePulse%3Cbr+%2F%3E%7B%3Cbr+%2F%3Efrom%7Bbackground-color%3Awhite%3B-webkit-box-shadow%3A0+0+30px+%23333%3B%7D%3Cbr+%2F%3E50%25%7Bbackground-color%3A%23faebd7%3B-webkit-box-shadow%3A0+0+70px+%23faebd7%3B%7D%3Cbr+%2F%3Eto%7Bbackground-color%3Awhite%3B-webkit-box-shadow%3A0+0+50px+%23333%3B%7D%3Cbr+%2F%3E%7D%3Cbr+%2F%3E%40-webkit-keyframes+redPulse%3Cbr+%2F%3E%7B%3Cbr+%2F%3Efrom%7Bbackground-color%3Ared%3B-webkit-box-shadow%3A0+0+18px+%23333%3B%7D%3Cbr+%2F%3E50%25%7Bbackground-color%3Argb%28255%2C38%2C38%29%3B-webkit-box-shadow%3A0+0+70px+rgb%28255%2C38%2C38%29%3B%7D%3Cbr+%2F%3Eto%7Bbackground-color%3Ared%3B-webkit-box-shadow%3A0+0+18px+%23333%3B%7D%3Cbr+%2F%3E%7D%3Cbr+%2F%3E%40-webkit-keyframes+bluePulse%3Cbr+%2F%3E%7B%3Cbr+%2F%3Efrom%7Bbackground-color%3Ablue%3B-webkit-box-shadow%3A0+0+30px+%23333%3B%7D%3Cbr+%2F%3E50%25%7Bbackground-color%3Argb%2821%2C21%2C255%29%3B-webkit-box-shadow%3A0+0+150px+rgb%2810%2C10%2C255%29%3B%7D%3Cbr+%2F%3Eto%7Bbackground-color%3Ablue%3B-webkit-box-shadow%3A0+0+50px+%23333%3B%7D%3Cbr+%2F%3E%7D%3Cbr+%2F%3E.white.button%7B%3Cbr+%2F%3E-webkit-animation-name%3AwhitePulse%3B%3Cbr+%2F%3E-webkit-animation-duration%3A0.2s%3B%3Cbr+%2F%3E-webkit-animation-iteration-count%3Ainfinite%3B%3Cbr+%2F%3E%7D%3Cbr+%2F%3E.red.button%7B%3Cbr+%2F%3E-webkit-animation-name%3AredPulse%3B%3Cbr+%2F%3E-webkit-animation-duration%3A0.3s%3B%3Cbr+%2F%3E-webkit-animation-iteration-count%3Ainfinite%3B%3Cbr+%2F%3E%7D%3Cbr+%2F%3E.blue.button%7B%3Cbr+%2F%3E-webkit-animation-name%3AbluePulse%3B%3Cbr+%2F%3E-webkit-animation-duration%3A0.3s%3B%3Cbr+%2F%3E-webkit-animation-iteration-count%3Ainfinite%3B%3Cbr+%2F%3E%7D%3Cbr+%2F%3E%26lt%3B%2Fstyle%26gt%3B%3Cbr+%2F%3E%26lt%3B%2Fhead%26gt%3B%3Cbr+%2F%3E%26lt%3Bbody%26gt%3B%3Cbr+%2F%3E%26lt%3Bdiv%26gt%3B%3Cbr+%2F%3E%26lt%3Ba+class%3D%22large1+blue+button%22%26gt%3B%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%26lt%3B%2Fa%26gt%3B%26lt%3Ba+class%3D%22small+white+button%22%26gt%3B%C2%A0POLICE%C2%A0%26lt%3B%2Fa%26gt%3B%26lt%3Ba+class%3D%22large2+red+button%22%26gt%3B%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%C2%A0%26lt%3B%2Fa%26gt%3B%3Cbr+%2F%3E%26lt%3B%2Fdiv%26gt%3B%3Cbr+%2F%3E%26lt%3Bbr%26gt%3B%3Cbr+%2F%3E%26lt%3Bbr%26gt%3B%3Cbr+%2F%3E%26lt%3Bbr%26gt%3B%3Cbr+%2F%3E%26lt%3Bpre%26gt%3B%3Cbr+%2F%3E%26lt%3B%2Fpre%26gt%3B%3Cbr+%2F%3E%26lt%3B%2Fbody%26gt%3B%3Cbr+%2F%3E%26lt%3B%2Fhtml%26gt%3B)
Step-by-step explanation:
polynomial in x whose zeroes are 1,2 and-1
f(x) = (x - 1)(x - 2)(x -(-1))
=> f(x) = (x - 1)(x - 2)(x + 1)
=> f(x) = (x - 2)(x² - 1)
=> f(x) = x³ - x - 2x² + 2
=> f(x) = x³ - 2x² - x + 2
Verification :
f(1) = 1³ - 2*1² - 1 + 2 = 0
f(2) = 2³ - 2*2² - 2+ 2 = 0
f(-1) = (-1)³ - 2*(-1)² - (-1) + 2 = 0
Answered by
2
f(x) = x³ - 2x² - x + 2 whose zeroes are 1 , 2 & - 1
Step-by-step explanation:
polynomial in x whose zeroes are 1,2 and-1
f(x) = (x - 1)(x - 2)(x -(-1))
=> f(x) = (x - 1)(x - 2)(x + 1)
=> f(x) = (x - 2)(x² - 1)
=> f(x) = x³ - x - 2x² + 2
=> f(x) = x³ - 2x² - x + 2
Verification :
f(1) = 1³ - 2*1² - 1 + 2 = 0
f(2) = 2³ - 2*2² - 2+ 2 = 0
f(-1) = (-1)³ - 2*(-1)² - (-1) + 2 = 0
HOPE SO IT IS HELPFUL..✌️❣️..
Similar questions
Math,
5 months ago
Math,
5 months ago
Math,
11 months ago
Social Sciences,
11 months ago
Physics,
1 year ago