Write a program to compute product of two matrices using strassen multiplication algorithm. Here the dimensions of matrices must be a power of 2.
Answers
Explanation:
algorithm to multiply two matrices. This is a program to compute product of two matrices using Strassen Multiplication algorithm. Here the dimensions of matrices must be a power of 2.
Here is the source code of the C program to multiply 2*2 matrices using Strassen’s algorithm. The C program is successfully compiled and run on a Linux system. The program output is also shown below.
/*
C code of two 2 by 2 matrix multiplication using Strassen's algorithm
*/
#include<stdio.h>
int main(){
int a[2][2], b[2][2], c[2][2], i, j;
int m1, m2, m3, m4 , m5, m6, m7;
printf("Enter the 4 elements of first matrix: ");
for(i = 0;i < 2; i++)
for(j = 0;j < 2; j++)
scanf("%d", &a[i][j]);
printf("Enter the 4 elements of second matrix: ");
for(i = 0; i < 2; i++)
for(j = 0;j < 2; j++)
scanf("%d", &b[i][j]);
printf("\nThe first matrix is\n");
for(i = 0; i < 2; i++){
printf("\n");
for(j = 0; j < 2; j++)
printf("%d\t", a[i][j]);
}
printf("\nThe second matrix is\n");
for(i = 0;i < 2; i++){
printf("\n");
for(j = 0;j < 2; j++)
printf("%d\t", b[i][j]);
}
m1= (a[0][0] + a[1][1]) * (b[0][0] + b[1][1]);
m2= (a[1][0] + a[1][1]) * b[0][0];
m3= a[0][0] * (b[0][1] - b[1][1]);
m4= a[1][1] * (b[1][0] - b[0][0]);
m5= (a[0][0] + a[0][1]) * b[1][1];
m6= (a[1][0] - a[0][0]) * (b[0][0]+b[0][1]);
m7= (a[0][1] - a[1][1]) * (b[1][0]+b[1][1]);
c[0][0] = m1 + m4- m5 + m7;
c[0][1] = m3 + m5;
c[1][0] = m2 + m4;
c[1][1] = m1 - m2 + m3 + m6;
printf("\nAfter multiplication using Strassen's algorithm \n");
for(i = 0; i < 2 ; i++){
printf("\n");
for(j = 0;j < 2; j++)
printf("%d\t", c[i][j]);
}
return 0;
}