Math, asked by shreyoseeshreya2633, 8 months ago

Write a Pythagorean triplet whose one member is 50


amitnrw: 50, 48 , 14 one & 50 , 624 , 626 another

Answers

Answered by Anonymous
6

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ required \ pythagorean \ triplet \ is}

\sf{50, \ 2\sqrt{373}, \ 14\sqrt7.}

\sf\pink{To \ find:}

\sf{Pythagorean \ triplet \ whose \ one \ member \ is \ 50.}

\sf\green{\underline{\underline{Solution:}}}

\sf{By \ identity}

\sf{(a+b)^{2}=a^{2}+b^{2}+2ab}

\sf{i.e. (a+b)^{2}=(a^{2}+b^{2})+2ab}

\sf{Also,}

\sf{Hypotenuse^{2}=(Side \ 1)^{2}+(Side \ 2)^{2}}

\sf{On \ comparing \ both, \ we \ get}

\sf{Hypotenuse^{2}=(a+b)^{2}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\boxed{\sf{Hypotenuse=a+b}}

\sf{(Side \ 1)^{2}=a^{2}+b^{2}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\boxed{\sf{Side \ 1=\sqrt{a^{2}+b^{2}}}}

\sf{(Side \ 2)^{2}=2ab}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\boxed{\sf{Side \ 2=\sqrt{2ab}}}

\sf{Here, \ a \ and \ b \ can \ be \ any \ integer.}

\sf{Here \ we \ need \ any \ one \ term \ 50.}

\sf{\therefore{Let \ a=14 \ and \ b=36}}

\sf{\therefore{a+b=14+36=50,}}

\sf{\sqrt{a^{2}+b^{2}}=\sqrt{14^{2}+36^{2}}}

\sf{=\sqrt{196+1296}}

\sf{=\sqrt{1492}}

\sf{\therefore{\sqrt{a^{2}+b^{2}}=2\sqrt{373},}}

\sf{\sqrt{2ab}=\sqrt{2\times14\times36}}

\sf{=\sqrt{2\times2\times7\times9\times2\times2}}

\sf{\therefore{\sqrt{2ab}=12\sqrt7}}

\sf\purple{\tt{\therefore{The \ required \ pythagorean \ triplet \ is}}}

\sf\purple{\tt{50, \ 2\sqrt{373}, \ 14\sqrt7.}}

______________________________________

\sf\blue{\underline{\underline{Verification:}}}

\sf{50^{2}=2500...(1)}

\sf{(2\sqrt{373})^{2}+(12\sqrt7)^{2}=1492+1008}

\sf{\therefore{(2\sqrt{373})^{2}+(12\sqrt7)^{2}=2500...(2)}}

\sf{...From \ (1) \ and \ (2), \ we \ get}

\sf{50^{2}=(2\sqrt{373})^{2}+(12\sqrt7)^{2}}

\sf{Hence, \ the \ required \ pythagorean \ triplet \ is}

\sf{50, \ 2\sqrt{373}, \ 12\sqrt7.}

Similar questions