Math, asked by adityasainityyy3, 10 months ago

Write a Pythagorean triplet whose one member is 8. i) 8,15,17 ii) (8,17,20) iii) (8,10,15) iv) 8,9,17​

Answers

Answered by RvChaudharY50
295

ᴄᴏɴᴄᴇᴘᴛ ᴜsᴇᴅ :-

If a, b are two sides of the triangle and c is the hypotenuse, then, a, b, and c :-

  • a = m² - n²
  • b = 2mn
  • c = m² + n²

Note :-

  • m, n are any two positive integers
  • m > n
  • m and n are coprime and both should not be odd numbers

Example :-

Let m = 2 , n = 1 ( m > n .)

Than ,

→ a = m² - n² = 2² - 1² = 4 - 1 = 3

→ b = 2mn = 2 * 2 * 1 = 4

→ c = m² + n² = 2² + 1² = 4 + 1 = 5.

So,

a² + b² = c²

→ 3² + 4² = 5²

→ 9 + 16 = 25

25 = 25 . (Verify).

Sᴏʟᴜᴛɪᴏɴ :-

Now, we have given that, one number is 8 .

→ Even number = 8

So, we can conclude that, it will be Equal to 2mn.

Thus,

2mn = 8 = b

→ mn = 4

Since m > n.

{ m = 4 , n = 1 }

Than,

→ m² - n² = 4² - 1² = 16 - 1 = 15 = a

m² + n² = 4² + 1² = 16 + 1 = 17 = c

check :-

→ a² + b² = c²

8² + 15² = 17²

→ 64 + 225 = 289

289 = 289 (verify.)

Hence, we can conclude that, Pythagorean triplet whose one member is 8 will be i) 8,15,17..

Answered by Anonymous
119
{ \underline{ \underline{ \blue{ \tt{ \huge{QUESTION- }}}}}}




• Write a Pythagorean triplet whose one member is 8



(i) 8, 5 , 17

(ii) 8, 17 , 20

(iii) 8, 10, 15

(iv) 8, 9 , 17



{ \underline{ \underline{ \tt{ \blue{ \huge{SOLUTION- }}}}}}




{ \pink{ \underline{ \underline{ \sf{Pythagorean  \: triplet}}}}}




✒ A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). 



where, c > ( a,b )



⛦ here, in this question we have to identify a Pythagorean triplet whose one member is 8.



{ \underline{ \tt{ \green{ (i) \: 8, \: 15 \: , \: 17}}}}




{ \sf{ let, \: }} \\ \\ { \red{ \sf{a = 8}}} \\ { \sf{ \red{b = 15}}} \\ { \sf{ \red{c = 17}}}




{ \star{ \sf{ \purple{ \: \: {a}^{2} + {b}^{2} = {8}^{2} + {15}^{2} }}}}




{ \implies{ \purple{ \sf{ {a}^{2} + {b}^{2} = 64 + 225}}}}




{ \implies{ \purple{ \sf{ {a}^{2} + {b}^{2} = 289}}}}



_______________________________________




{ \star{ \purple{ \sf{ \: \: \: {c}^{2} = {17}^{2} }}}}




{ \implies{ \sf{ \purple{ {c}^{2} = 289}}}}



_______________________________________




{ \boxed{ \pink{ \sf{ \: \: 289 = 289 \: \: }}}}




{ \sf{ thus,}} \\ \\ { \boxed{ \boxed{ \blue{ \sf{ \: \: \: {a}^{2} + {b}^{2} = {c}^{2} \: \: \: }}}}}




{ \sf{ hence,}} \\ \\ { \sf{ \red{(i) \: 8, \: 15, \: 17 \: \: - \: is \: the \: answer}}} \\ \\ { \green{ \sf{it \: is \: the \: pythagorean \: triplet }} }\\ { \sf{ \green{\: that \: has \: 8 \: as \: its \: one \: member.}}}
Similar questions