Math, asked by sayanibhadury02, 4 months ago

Write a quadratic polynomial whose sums of whose zero is _-2
and product is -1​

Answers

Answered by aarushchoudhary59
9

Step-by-step explanation:

Let S and P denotes respectively the sum and product of the zeros of a polynomial are and 2.

The required polynomial g(x) is given by

Hence, the quadratic polynomial is where k is any non-zero real number.


sayanibhadury02: thank u❣️
aarushchoudhary59: welcome
Answered by chukkalur2004
9

Answer:

 {x}^{2}  + 2x - 1

Step-by-step explanation:

We know that,

Quadratic equation when sum of zeros is 'a' and product of its zeroes is 'b' is,

 {x}^{2}  - (a)x + (b)

In this problem, we are given that,

Sum of zeroes (a) = -2

Product of zeroes (b) = -1

On substituting the values in the formula, we have,

 {x}^{2}  - ( - 2)x + ( - 1)

 {x}^{2}  + 2x - 1

Therefore, our required quadratic equation is x^2+2x-1.

Hope it helps you.

Good Luck.

Similar questions