Write a short note on human Nephrone. With labelled diagram. plz 5 mark question
Answers
Answered by
3
Nephron Definition
A nephron is the basic unit of structure in the kidney. A nephron is used separate to water, ions and small molecules from the blood, filter out wastes and toxins, and return needed molecules to the blood. The nephron functions through ultrafiltration. Ultrafiltration occurs when blood pressure forces water and other small molecules through tiny gaps in capillary walls. This substance, lacking the blood cells and large molecules in the bloodstream, is known as an ultrafiltrate. The ultrafiltrate travels through the various loops of the nephron, where water and important molecules are removed, and into a collecting duct which drains into the bladder.
Function of a Nephron
A nephron is responsible for removing waste products, stray ions, and excess water from the blood. The blood travels through the glomerulus, which is surrounded by the glomerular capsule. As the heartpumps the blood, the pressure created pushes small molecules through the capillaries and into the glomerular capsule. This is the, more physical function of the nephron. Next, the ultrafiltrate must travel through a winding series of tubules. The cells in each part of the tube have different molecules that they like to absorb. Molecules to be excreted remain in the tubule, while water, glucose and other beneficial molecules work their way back into the bloodstream. As the ultrafiltrate travels down the tubules, the cells become more and more hypertoniccompared to the ultrafiltrate. This causes a maximum amount of water to be extracted from the ultrafiltrate before it exits the nephron. The blood surrounding the nephron returns to the body via the interlobular vein, free of toxins and excess substances. The ultrafiltrate is now urine, and moves via the collecting duct to the bladder, where it will be stored.
Structure of NephrON
. This nephron contains a loop of Henle, so it is a mammalian nephron. While the loop of the nephron is special to mammals, the rest of the structure is seen in all vertebrate animals. The glomerulus is the net of capillaries inside of the glomerular capsule (aka Bowman’s capsule). While the picture shows the glomerular capsule and the rest of the renal tubule look to be the same in the graphic below, they are in fact composed of a wide variety of cell types, intended to extract and retain certain chemicals within the tubules.
Each nephron consists of one main interlobular artery feeding a single renal tubule. Each kidney in a vertebrate has hundreds to millions of nephrons, each of which produces urine and sends it to the bladder. The cells in each nephron are arranged so that the most concentrated cells are at the bottom of the nephron, while the cells at the top are less concentrated. The cells near the exit of the nephron are the most concentrated, and therefore extract as much water as possible from the ultrafiltrate before it is sent to the bladder.
A nephron is the basic unit of structure in the kidney. A nephron is used separate to water, ions and small molecules from the blood, filter out wastes and toxins, and return needed molecules to the blood. The nephron functions through ultrafiltration. Ultrafiltration occurs when blood pressure forces water and other small molecules through tiny gaps in capillary walls. This substance, lacking the blood cells and large molecules in the bloodstream, is known as an ultrafiltrate. The ultrafiltrate travels through the various loops of the nephron, where water and important molecules are removed, and into a collecting duct which drains into the bladder.
Function of a Nephron
A nephron is responsible for removing waste products, stray ions, and excess water from the blood. The blood travels through the glomerulus, which is surrounded by the glomerular capsule. As the heartpumps the blood, the pressure created pushes small molecules through the capillaries and into the glomerular capsule. This is the, more physical function of the nephron. Next, the ultrafiltrate must travel through a winding series of tubules. The cells in each part of the tube have different molecules that they like to absorb. Molecules to be excreted remain in the tubule, while water, glucose and other beneficial molecules work their way back into the bloodstream. As the ultrafiltrate travels down the tubules, the cells become more and more hypertoniccompared to the ultrafiltrate. This causes a maximum amount of water to be extracted from the ultrafiltrate before it exits the nephron. The blood surrounding the nephron returns to the body via the interlobular vein, free of toxins and excess substances. The ultrafiltrate is now urine, and moves via the collecting duct to the bladder, where it will be stored.
Structure of NephrON
. This nephron contains a loop of Henle, so it is a mammalian nephron. While the loop of the nephron is special to mammals, the rest of the structure is seen in all vertebrate animals. The glomerulus is the net of capillaries inside of the glomerular capsule (aka Bowman’s capsule). While the picture shows the glomerular capsule and the rest of the renal tubule look to be the same in the graphic below, they are in fact composed of a wide variety of cell types, intended to extract and retain certain chemicals within the tubules.
Each nephron consists of one main interlobular artery feeding a single renal tubule. Each kidney in a vertebrate has hundreds to millions of nephrons, each of which produces urine and sends it to the bladder. The cells in each nephron are arranged so that the most concentrated cells are at the bottom of the nephron, while the cells at the top are less concentrated. The cells near the exit of the nephron are the most concentrated, and therefore extract as much water as possible from the ultrafiltrate before it is sent to the bladder.
Attachments:
Manish6264744274:
please mark me
Similar questions