Math, asked by k5apalManaKrnaumyas, 1 year ago

write a square matrix of order 2 which is both symmetric and skew symmetric?

Answers

Answered by sharinkhan
73
A= [0,0]
     [0,0]

and A' = [0,0]
              [0,0]
thus A=A'

also -A= [0,0]
              [0,0]
A=-A

Answered by skyfall63
24

The square matrix is \bold{\left( \begin{array}{ll}{0} & {0} \\ {0} & {0}\end{array}\right)}

Step-by-step explanation:

Method I:

Let us consider a matrix A of order 2 as \left( \begin{array}{ll}{a} & {c} \\ {b} & {d}\end{array}\right) which is symmertric and skew symmetric

A^{\top}=A \text { and } A^{\top}=(-A)

\left( \begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right)=\left( \begin{array}{ll}{a} & {c} \\ {b} & {d}\end{array}\right) \text { and } \left( \begin{array}{ll}{a} & {b} \\ {c} & {d}\end{array}\right)=\left( \begin{array}{cc}{-a} & {-c} \\ {-b} & {-d}\end{array}\right)

a=a, b=c, c=b, d=d and a=-a, b=-b, c=-c, d=-d

b=c and 2a=0, 2b=0, 2c=0, 2d=0

a=b=c=d=0

The Matrix satisfying both the given conditions is a null matrix \left( \begin{array}{ll}{0} & {0} \\ {0} & {0}\end{array}\right)

Method II:

Given \mathrm{A}^{\top}=\mathrm{A} \text { and } \mathrm{A}^{\mathrm{T}}=(-\mathrm{A})

Adding both the equations, A^{\top}+A^{\top}=A-A

2 \mathrm{A}^{\top}=0

A^{\top}=0

\mathrm{A}^{\mathrm{T}}=0

Therefore, the matrix satisfying both the conditions is a null matrix \left( \begin{array}{ll}{0} & {0} \\ {0} & {0}\end{array}\right)

Similar questions