Write about the applications of nanomaterials in the field of medicine, electronics, sports, health and biology.
Answers
Nanotechnology is enabling technology that deals with nano-meter sized objects. It is expected that nanotechnology will be developed at several levels: materials, devices and systems. The nanomaterials level is the most advanced at present, both in scientific knowledge and in commercial applications. A decade ago, nanoparticles were studied because of their size-dependent physical and chemical properties . Now they have entered a commercial exploration period .
Living organisms are built of cells that are typically 10 μm across. However, the cell parts are much smaller and are in the sub-micron size domain. Even smaller are the proteins with a typical size of just 5 nm, which is comparable with the dimensions of smallest manmade nanoparticles. This simple size comparison gives an idea of using nanoparticles as very small probes that would allow us to spy at the cellular machinery without introducing too much interference . Understanding of biological processes on the nanoscale level is a strong driving force behind development of nanotechnology .
Out of plethora of size-dependant physical properties available to someone who is interested in the practical side of nanomaterials, optical and magnetic effects are the most used for biological applications.
The aim of this review is firstly to give reader a historic prospective of nanomaterial application to biology and medicine, secondly to try to overview the most recent developments in this field, and finally to discuss the hard road to commercialisation. Hybrid bionanomaterials can also be applied to build novel electronic, optoelectronics and memory devices (see for example . Nevertheless, this will not be discussed here and will be a subject of a separate article.