English, asked by Hellokitty555555, 1 month ago

write all formula of trigonometry and represent the trigonometric ratios of angle ​

Answers

Answered by AestheticSky
22

 \bigstar { \pmb{ \red  { \sf \: trigonometric \: ratios  }}}

 \implies \sf \pink{ \sin \theta =  \dfrac{opposite \: side}{hypotenuse}  }

 \implies \sf \green{ \cos \theta =  \dfrac{adjacent \: side}{hypotenuse} }

 \implies \sf \pink{ \tan \theta =  \dfrac{opposite \: side}{adjacent \: side} }

 \implies \sf \green{ \cosec \theta =  \dfrac{hypotenuse}{opposite\: side} =  \dfrac{1}{ \sin \theta}  }

\implies \sf \pink{ \sec\theta =  \dfrac{hypotenuse}{adjacent \: side} =  \dfrac{1}{ \cos \theta }  }

 \implies \sf \green{ \cot \theta =  \dfrac{adjacent \: side}{opposite \: side} =  \dfrac{1}{ \tan \theta}  }

 \bigstar { \pmb{ \red  { \sf \: trigonometric \: identities  }}}

  \longrightarrow\sf \orange{ { \sin}^{2}  \theta +  { \cos }^{2} \theta = 1 }

 \longrightarrow\sf \blue{ { \sec}^{2}  \theta  -   { \ tan}^{2} \theta = 1 }

 \longrightarrow\sf \orange{ { \cosec}^{2}  \theta +  { \cot }^{2} \theta = 1 }

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

\bigstar { \pmb{ \red  { \sf \: Ratios\:of\:complementary\:angles  }}}

  • sin∅ = cos(90-∅)
  • cos∅ = sin(90-∅)
  • tan∅ = cot(90-∅)
  • cot∅ = tan(90-∅)
  • sec∅ = cosec(90-∅)
  • cosec∅ = sec(90-∅)

_______________________________

hope it's beneficial :D

Answered by rosoni28
4

{\Huge{ \red{\underline{\underline{\bf{\maltese \pink{ Ànswer: \: }}}}}}}

\huge\bigstar{ \pmb{ \red { \sf \: trigonometric \: ratios }}}★

\implies\sf\pink{ \sin \theta = \dfrac{opposite \: side}{hypotenuse} }

\implies \sf \red{ \cos \theta = \dfrac{adjacent \: side}{hypotenuse} }

\implies \sf \green{ \tan \theta = \dfrac{opposite \: side}{adjacent \: side} }

\implies\sf \blue{ \cosec \theta = \dfrac{hypotenuse}{opposite\: side} = \dfrac{1}{ \sin \theta} }

\implies \sf \red{ \sec\theta = \dfrac{hypotenuse}{adjacent \: side} = \dfrac{1}{ \cos \theta } }

\implies \sf \orange{ \cot \theta = \dfrac{adjacent \: side}{opposite \: side} = \dfrac{1}{ \tan \theta} }

\huge\bigstar { \pmb{ \red { \sf \: trigonometric \: identities }}}★

\boxed \longrightarrow\sf\orange{ { \sin}^{2} \theta + { \cos }^{2} \theta = 1 }

\longrightarrow\sf \blue{ { \sec}^{2} \theta - { \ tan}^{2} \theta = 1 }

\longrightarrow\sf \red{ { \cosec}^{2} \theta + { \cot }^{2} \theta = 1 }

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}

\huge\bigstar { \pmb{ \pink { \sf \: Ratios\:of\:complementary\:angles }}}★

sin∅ = cos(90-∅)

cos∅ = sin(90-∅)

tan∅ = cot(90-∅)

cot∅ = tan(90-∅)

sec∅ = cosec(90-∅)

cosec∅ = sec(90-∅)

--------------------×××××--------------------

Similar questions