Math, asked by anjuram315, 4 months ago

Write all
points of discontinuity of
greatest integer function [x] in the interval
[-3,1).​

Answers

Answered by Anonymous
5

  {\large{\star }} \:  \: \:  \:  \large \bf{ \color{brown} \underline{ \underline{Explanation }} } \:  \:  \: \:  \large \star\\  \\  \circ \:  \:  \tt \green{ process \: 1} \\  \\  \tt \: f(x) = [x] \:  \\  \\  \tt \sharp \:  \:   \: to \: \:  check  \: \: the \:  \: pts \:  \: of \: \:  discontinuity \:  \: in \:  \: its \: domain \\ \tt lets \:  \: have \:  \: a \:  \: look \:  \: in \:  \: its \:  \: graph \\  \\  \checkmark \tt \: from \:  \: this \:  \: graph \:  \: we \:  \: can \: say \:  \: function \:  \: is \:  \: discontinuous  \\  \tt  \:  \:  at \:  \: any \: \: natural \:  \: value \:  \: of \:  \: x \:  \: i n \:  \: its \:  \: domain \\  \tt \: hecne \:  \: pts \:  \: are \:  \: 0, \:  - 1, - 2, - 3 \\  \\   \tt  \circ \:  \:  \:   \green{process  \:  2} \\  \\  \tt \:  \natural \:  \: checking \: \:  pts \:  \: individually \:  \: with \:  \: algebraic \:  \:  Process \\  \\ \tt \checkmark \: checking \:  \: for \:  \: pt \: 0 \\   \\  \tt  \lim_{ x \to0^{ + } }f(x)  = 0 \\  \tt \lim_{ x \to0^{  -  } }f(x)  =  - 1 \\  \\  \therefore \:  \:  \tt \:  \lim_{ x \to0^{ + } }f(x)  \not =  \lim_{ x \to0^{  -  } }f(x)  \\  \\  \\  \\  \tt  \lim_{ x \to  - 1^{ + } }f(x)  =  - 1\\  \tt \lim_{ x \to  - 1^{  -  } }f(x)  =  -2  \\  \\  \therefore \:  \:  \tt \:  \lim_{ x \to - 1^{ + } }f(x)  \not =  \lim_{ x \to - 1^{  -  } }f(x)  \\  \\  \tt \checkmark similarly \:  \:  we \:  \:  can \:  \:  say \:  \: this \:  \: for \:  \: other \:  \: natural \:  \: values\:  \: of \:  \: x  \:  \\  \tt \: hence \: pts \:  \: are \: 0 , - 1, - 2, - 3\\   \\

Attachments:
Similar questions
Math, 2 months ago