write all the formulas for the chapter system of particles and rotational motion??
Answers
Answered by
37
1) ω = θ2 - θ1 / t2- t1 = Δθ / Δt average angular velocity
2)instantanious angural velocity ω= dθ/dt
3)average angular accelaration α=ω2-ω1/t2-t1=Δω/Δt
Relation b/w v ω and r
v=rω
in vector form v= wxr think the direction above do not worry
in genral form v=wrsinα
Relation b/w linear and angular variables
distance = rα
accelaration = at=dv/dt=rα (tangentially directed)
ar=v²/r=ω²r (directed towards center )
equation of rotational motion
w=ω°+αt
θ=w⁰t+1/2αt²
ω²-ω°²=2αθ
dude dont worry i will write the energy of a rigid body
gravitational PE=u=mgh
KE=1/2 Iω²
parallel axis theorem
Ip=Icm+Md²
perpendicular axis theorem
Iz=Ix+Iy
Radius of gyration
k=√I/m
torque and angular momentum
T=R×f
t=Iα
t=rfsinα
t=dl/dt
L=r×p
l=rpsinα
l=Iω
Moment of inertia for some rigid bodies
for hollow cylinder
I=1/2M(r1²+r2²)
for rectangular plate
I=1/12M(a²+b²)
for long thin rod
I=1/3ML²
fir thin spherical shell
I=2/3MR²
for cylindrical shell
I=MR²
for disc
I=1/2MR²
for long thin rod
I=1/12ML²
for solid sphere
I= 2/4MR²
Combined rotation and transition
KE=1/2MV²+1/2Iω²
angular momentum
L=Lbody-cm + Lcm
instantaneous point /axis of rest
KE=1/2 Iω²
2)instantanious angural velocity ω= dθ/dt
3)average angular accelaration α=ω2-ω1/t2-t1=Δω/Δt
Relation b/w v ω and r
v=rω
in vector form v= wxr think the direction above do not worry
in genral form v=wrsinα
Relation b/w linear and angular variables
distance = rα
accelaration = at=dv/dt=rα (tangentially directed)
ar=v²/r=ω²r (directed towards center )
equation of rotational motion
w=ω°+αt
θ=w⁰t+1/2αt²
ω²-ω°²=2αθ
dude dont worry i will write the energy of a rigid body
gravitational PE=u=mgh
KE=1/2 Iω²
parallel axis theorem
Ip=Icm+Md²
perpendicular axis theorem
Iz=Ix+Iy
Radius of gyration
k=√I/m
torque and angular momentum
T=R×f
t=Iα
t=rfsinα
t=dl/dt
L=r×p
l=rpsinα
l=Iω
Moment of inertia for some rigid bodies
for hollow cylinder
I=1/2M(r1²+r2²)
for rectangular plate
I=1/12M(a²+b²)
for long thin rod
I=1/3ML²
fir thin spherical shell
I=2/3MR²
for cylindrical shell
I=MR²
for disc
I=1/2MR²
for long thin rod
I=1/12ML²
for solid sphere
I= 2/4MR²
Combined rotation and transition
KE=1/2MV²+1/2Iω²
angular momentum
L=Lbody-cm + Lcm
instantaneous point /axis of rest
KE=1/2 Iω²
Similar questions