Write all The Formulas of derivatives .....for class +1 ....................Please Fast ...............
Answers
Answered by
6
==============================
function derivative
=============================
constant 0
x 1
x^n n x^{n-1}
f ( g(x) ) f ' ( g(x) ) * g' (x)
Sin x cos x
Cos x - sin x
Tan x sec^2 x
Sec x sec x tan x
1/x - 1/ x^2
Ln x 1/x
e^x e^x
f (x) + g(x) f ' (x) + g ' (x)
f (x) * g (x) f (x) * g ' (x) + f '(x) * g(x)
f (x) / g(x) [ f '(x) g(x) - f(x) g'(x) ] / [ g(x) ]^2
Sinh (x) Cosh (x)
Cosh (x) sinh (x)
Tanh (x) Sech^2 (x)
a^x a^x * ln a
a * f(x) a * f ' (x)
a * f^n (x) a * n * f^{n-1} (x) * f '(x)
Sin⁻¹ x 1/√(1-x²)
Cos⁻¹ x - 1/√(1-x²)
tan⁻¹ x 1 / (1+x²)
There are other trigonometric, inverse trigonometric, hyperbolic and inverse hyper bolic functions... also..
function derivative
=============================
constant 0
x 1
x^n n x^{n-1}
f ( g(x) ) f ' ( g(x) ) * g' (x)
Sin x cos x
Cos x - sin x
Tan x sec^2 x
Sec x sec x tan x
1/x - 1/ x^2
Ln x 1/x
e^x e^x
f (x) + g(x) f ' (x) + g ' (x)
f (x) * g (x) f (x) * g ' (x) + f '(x) * g(x)
f (x) / g(x) [ f '(x) g(x) - f(x) g'(x) ] / [ g(x) ]^2
Sinh (x) Cosh (x)
Cosh (x) sinh (x)
Tanh (x) Sech^2 (x)
a^x a^x * ln a
a * f(x) a * f ' (x)
a * f^n (x) a * n * f^{n-1} (x) * f '(x)
Sin⁻¹ x 1/√(1-x²)
Cos⁻¹ x - 1/√(1-x²)
tan⁻¹ x 1 / (1+x²)
There are other trigonometric, inverse trigonometric, hyperbolic and inverse hyper bolic functions... also..
kvnmurty:
please click on thanks blue button above
Answered by
0
Answer:
Explanation:
Power Rule: (d/dx) (xn ) = nxn-1
Derivative of a constant, a: (d/dx) (a) = 0
Derivative of a constant multiplied with function f: (d/dx) (a. f) = af’
Sum Rule: (d/dx) (f ± g) = f’ ± g’
Product Rule: (d/dx) (fg)= fg’ + gf’
Quotient Rule:ddx(fg) = gf′–fg′g2
ddx(sin x)=cos x
ddx(cos x)=–sin x
ddx(tan x)=sec2x
ddx(cot x=−cosec2x
ddx(sec x)=sec x tan x
ddx(cosec x)=−cosec x cot x
ddx(sinh x)=cosh x
ddx(cosh x)=sinh x
ddx(tanh x)=sech2x
ddx(coth x)=−cosech2x
ddx(sech x)=−sech x tanh x
ddx(cosech x)=−cosech x coth x
se trigonometric functions.
ddx(ax)=axlna
ddx(ex)=ex
ddx(loga x) = 1(ln a)x
ddx(ln x)=1/x
Chain Rule: dydx = dydu×dudx = dydv×dvdu×dudx
Similar questions