write all the three formula of pythagorus therom ??
Answers
We can show that a2 + b2 = c2 using Algebra
Take a look at this diagram ... it has that "abc" triangle in it (four of them actually):
Squares and Triangles
Area of Whole Square
It is a big square, with each side having a length of a+b, so the total area is:
A = (a+b)(a+b)
Area of The Pieces
Now let's add up the areas of all the smaller pieces:
First, the smaller (tilted) square has an area of: c2
Each of the four triangles has an area of: ab2
So all four of them together is: 4ab2 = 2ab
Adding up the tilted square and the 4 triangles gives: A = c2 + 2ab
Both Areas Must Be Equal
The area of the large square is equal to the area of the tilted square and the 4 triangles. This can be written as:
(a+b)(a+b) = c2 + 2ab
NOW, let us rearrange this to see if we can get the pythagoras theorem:
Start with: (a+b)(a+b) = c2 + 2ab
Expand (a+b)(a+b): a2 + 2ab + b2 = c2 + 2ab
Subtract "2ab" from both sides: a2 + b2 = c2
Pythagoras Theorem Proof
Given: A right-angled triangle ABC.
To Prove- AC² = AB² + BC²
Proof: First, we have to drop a perpendicular BD onto the side AC
We know, △ADB ~ △ABC
Therefore,
AD AB
----- = -----
AB AC
(Condition for similarity)
Or, AB² = AD × AC …………………..……..(1)
Also, △BDC ~△ABC
Therefore,
CD BC
----- = -----
BC AC
(Condition for similarity)
Or, BC²= CD × AC …………………………..(2)
Adding the equations (1) and (2) we get,
AB² + BC² = AD × AC + CD × AC
AB² + BC² = AC (AD + CD)
Since, AD + CD = AC
Therefore, AC² = AB² + BC²
Hence, the Pythagorean thoerem is proved.