Math, asked by alov00722, 6 months ago

Write all the trigonometric identities .☠☠No spams ❎

Answers

Answered by Abhisheksingh5722
27

Terms in this set (8)

Terms in this set (8)Reciprocal: csc(θ) = csc(θ) = 1/sin(θ)

Terms in this set (8)Reciprocal: csc(θ) = csc(θ) = 1/sin(θ)Reciprocal: sec(θ) = sec(θ) = 1/cos(θ)

Terms in this set (8)Reciprocal: csc(θ) = csc(θ) = 1/sin(θ)Reciprocal: sec(θ) = sec(θ) = 1/cos(θ)Reciprocal: cot(θ) = cot(θ) = 1/tan(θ)

Terms in this set (8)Reciprocal: csc(θ) = csc(θ) = 1/sin(θ)Reciprocal: sec(θ) = sec(θ) = 1/cos(θ)Reciprocal: cot(θ) = cot(θ) = 1/tan(θ)Ratio: tan(θ) = tan(θ) = sin(θ)/cos(θ)

Terms in this set (8)Reciprocal: csc(θ) = csc(θ) = 1/sin(θ)Reciprocal: sec(θ) = sec(θ) = 1/cos(θ)Reciprocal: cot(θ) = cot(θ) = 1/tan(θ)Ratio: tan(θ) = tan(θ) = sin(θ)/cos(θ)Ratio: cot(θ) = cot(θ) = cos(θ)/sin(θ)

Terms in this set (8)Reciprocal: csc(θ) = csc(θ) = 1/sin(θ)Reciprocal: sec(θ) = sec(θ) = 1/cos(θ)Reciprocal: cot(θ) = cot(θ) = 1/tan(θ)Ratio: tan(θ) = tan(θ) = sin(θ)/cos(θ)Ratio: cot(θ) = cot(θ) = cos(θ)/sin(θ)Pythagorean: sin costs = $1. ...

Terms in this set (8)Reciprocal: csc(θ) = csc(θ) = 1/sin(θ)Reciprocal: sec(θ) = sec(θ) = 1/cos(θ)Reciprocal: cot(θ) = cot(θ) = 1/tan(θ)Ratio: tan(θ) = tan(θ) = sin(θ)/cos(θ)Ratio: cot(θ) = cot(θ) = cos(θ)/sin(θ)Pythagorean: sin costs = $1. ... Pythagorean: I tan = get sic. ...

Terms in this set (8)Reciprocal: csc(θ) = csc(θ) = 1/sin(θ)Reciprocal: sec(θ) = sec(θ) = 1/cos(θ)Reciprocal: cot(θ) = cot(θ) = 1/tan(θ)Ratio: tan(θ) = tan(θ) = sin(θ)/cos(θ)Ratio: cot(θ) = cot(θ) = cos(θ)/sin(θ)Pythagorean: sin costs = $1. ... Pythagorean: I tan = get sic. ... Pythagorean: I cut = crescent rolls.

Answered by Anonymous
1

Trigonometric Identies:

{\sin}^2\:\theta+{\cos}^2\:\theta\:=\:1\\\\1+{\tan}^2\:\theta\:=\:{\sec}^2\:\theta\\\\1+{\cot}^2\:\theta\:=\:{\csc}^2\:\theta \\  \\  \\

Trigonometric Ratios

\sin\:\theta\:=\:\dfrac{Perpendicular}{Hypotenuse} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\\cos\:\theta\:=\:\dfrac{Base}{Hypotenuse} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\\tan\:\theta\:=\:\dfrac{\sin\:\theta}{\cos\:\theta}\:=\:\dfrac{Perpendicular}{Base} \:  \:  \:  \: \\\\\sec\:\theta\:=\:\dfrac{1}{\cos\:\theta}\:=\:\dfrac{Hypotenuse}{Base} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\\\\cosec\:\theta\:=\:\dfrac{1}{\sin\:\theta}\:=\:\dfrac{Hypotenuse}{Perpendicular}\\\\\cot\:\theta\:=\:\dfrac{1}{\tan\:\theta}\:=\:\dfrac{Perpendicular}{Hypotenuse} \:  \:  \:  \:

Hope it helps u.

Please mark it as brainliest.

Have a great day ahead

Similar questions