Math, asked by abhiraj7392, 11 months ago

Write all the values of p for which the quadratic equation x^2+px+16=0 has equal roots . Find theroots of the equation so obtained

Answers

Answered by aishujb199
0

Answer: p=8

Since the given equation has equal roots , we can say that

》D=0

》b^2 - 4ac=0

》p^2 - 64 =0

》p^2 = 64

Therefore , p=8

So the equations now is: x^2 + 8x +16 =0

And the root of this equation is: -4

Answered by ajay8949
0

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {x}^{2}  + px + 16 = 0

as \: the \: equation \: have \: equal \: roots\\so  \:  \:  \:  \:  \red{\boxed { b {}^{2}  - 4ac = 0}}

 here \: \:  \:  \:  a = 1 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: b = p \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  c = 16

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {p}^{2}  - 4(1)(16) = 0

 \:  :⟹ \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  {p}^{2}  - 64 = 0

 \:  \:  :⟹   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {p}^{2}  = 64

 \:  \:  \:  \:  :⟹   \:  \:  \:  \:  \:  \:  \:  \:  \: p =  \sqrt{64}

 \:  \:  \:  : ⟹   \:  \:  \:  \:  \:  \:  \:  \:  \:  \  \fcolorbox{blue}{pink}{\fcolorbox{green}{aqua} {p = ±8}}

 \:  \:  \:  \:  \:  \:  \:  \:  \: p(x) =  {x}^{2}  + px + 16

when \:  \:  \:  \:  \pink{p = 8}

  :⟹ \:  \:  \:  {x}^{2}  + 8x + 16 = 0

 : ⟹ \:  \:  {x}^{2}  + 4x + 4x + 16 = 0

 : ⟹x(x + 4) + 4(x + 4) = 0

 : ⟹  \:  \:  \:  \: (x + 4)(x + 4) = 0

 : ⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{x =  - 4}

when \:  \:  \:   \pink{p =  - 8}

 : ⟹ {x}^{2}   - 8x + 16 = 0

 : ⟹ {x}^{2}  - 4x - 4x + 16 = 0

 : ⟹x(x - 4) - 4(x - 4) = 0

 : ⟹(x - 4)(x - 4) = 0

 : ⟹ \:  \:  \:  \:  \:  \:  \:  \:  \boxed{x = 4}

\underbrace\mathcal\red{Please\:mark\:as\:\:Brainliest..............}

Similar questions