Math, asked by payash6252, 1 year ago

Write & verify the Commutative property by taking two rational numbers.

Answers

Answered by aaakaaash
2
commutative property under ,addition subtraction, multiplication ,division
Attachments:
Answered by phillipinestest
8

Answer:

Property of Commutative law by taking two rational numbers.

Let  \frac { a }{ b } and \frac { c }{ d } are two rational numbers.

\frac { a }{ b } +\frac { c }{ d } \quad =\quad \frac { c }{ d } +\frac { a }{ b }(Addition)

\frac { a }{ b } \times \frac { c }{ d } \quad =\quad \frac { c }{ d } \times \frac { a }{ b }(Multiplication)

Let two rational numbers are  \frac { 1 }{ 5 } and \frac { 1 }{ 7 }.

Commutative property by taking two rational numbers(Addition)

\frac { 1 }{ 5 } +\frac { 1 }{ 7 } \quad =\quad \frac { (7+5) }{ 35 } \quad =\quad \frac { 12 }{ 35 } \frac { 1 }{ 7 } +\frac { 1 }{ 5 } \quad =\quad \frac { (7+5) }{ 35 } \quad =\quad \frac { 12 }{ 35 }

\frac { 1 }{ 7 } +\frac { 1 }{ 5 } \quad =\quad \frac { 1 }{ 7 } +\frac { 1 }{ 5 } \quad =\quad \frac { 12 }{ 35 } Proved

Commutative property by taking two rational numbers (Multiplication)

\frac { 1 }{ 5 } \times \frac { 1 }{ 7 } \quad =\quad \frac { 1 }{ 35 } And \frac { 1 }{ 7 } +\frac { 1 }{ 5 } \quad =\quad \frac { 1 }{ 35 }

\frac { 1 }{ 5 } \times \frac { 1 }{ 7 } \quad =\quad \frac { 1 }{ 7 } +\frac { 1 }{ 5 } \quad =\quad \frac { 1 }{ 35 } Proved.

Similar questions