Math, asked by patilneha93638, 1 month ago

write an A . p . whose first is 9 and common difference is 4​

Answers

Answered by Anonymous
353

\maltese\:\underline{\bf AnsWer :}\:\maltese \\

In the question we are given that, first term of an AP is 9 and common difference (d) is 4. We need to find the required A.P .

\bullet\:\sf First  \: Term \:  (a_1) = 9

\bullet\:\sf Common \:  Difference \:  (d) = 4 \\

\underline{\boldsymbol{According\: to \:the\: Question\:now :}} \\

\qquad \quad \dag\: \underline{\textbf{Second Term :  }}

:\implies \sf Second  \: Term = First \:  Term + Common \:  Difference \\  \\

:\implies \sf a_2 = a_1 + d \\  \\

:\implies \sf a_2 = 9 + 4\\  \\

:\implies \underline{ \overline{ \sf a_2 = 13}}\\  \\

\qquad \quad \dag\: \underline{\textbf{Third Term :  }}

:\implies \sf a_3 = a_1 + 2d \\  \\

:\implies \sf a_3 = 9+ 2 \times 4\\  \\

:\implies \sf a_3 = 9+ 8\\  \\

:\implies \underline{ \overline{ \sf a_3 = 17}}\\  \\

\qquad \quad \dag\: \underline{\textbf{Fourth Term :  }}

:\implies \sf a_4 = a_1 + 3d \\  \\

:\implies \sf a_4 = 9+ 3 \times4  \\  \\

:\implies \sf a_4 = 9+ 12\\  \\

:\implies \underline{ \overline{ \sf a_4 = 21}}\\  \\

\therefore\:\underline{\textsf{The required A.P is \textbf{9, 13, 17, 21....}}}.\:\dag \\


Asterinn: Nice!
Anonymous: Thäñk yoú T.T
Answered by Ridvisha
119

{ \underline{ \underline{ \huge{ \blue{ \tt{SOLUTION}}}}}}

{ \dag{ \underline{ \underline{ \tt{ \orange{ \:  \: given}}}}}}   \\ { \dashrightarrow{ \sf{ \purple{  \:  \: common \: difference(d) = 4}}}} \\ { \dashrightarrow{ \sf{  \purple{ \:  \: first \: term(a) = 9}}}}

{ \dag{ \underline{ \underline{ \orange{ \tt{ \:  \: to \: find}}}}}} \\ { \sf{write \: AP \: series \: from \: the \: given \: data}}

{ \dag{ \underline{ \underline{ \tt{ \orange{  \:  \:  \: formula \: used}}}}}} \\  \\ { \boxed{ \boxed{ \tt{ \green{Tn \:  = a + (n - 1)d}}}}} \\ { \sf{where}} \\ { \sf{Tn \:  =  \: { \green{n \: th \: term}}}} \\ { \sf{ a \:  = { \green{ \: first \: term}}}} \\ { \sf{n \:  =  \: { \green{number \: of \: terms}}}} \\ { \sf{d \:  = { \green{ \: common \: difference}}}}

{ :  \implies{ \underline{ \red{ \sf{ \: first \: term \:  =  \: 9}}}}}

{ : { \implies{ \underline{ \sf{ \red{ \: second  \: term \: ( \: T2  \: )}}}}}} \\ { \sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: n = 2}} \\  \:  \:  \:  \:  \:  \:  { \rightarrow{ \sf{ \blue{ \:   \:  \: T2 = 9 + (2 - 1)4}}}} \\  \:  \:  \:  \:  \:  \: { \sf{ \rightarrow{ \blue{ \:  \:  \: T2 = 9 + 4}}}} \\ \:  \:  \:  \:  \:  \:   { \rightarrow \:  \:  \:  { \underline{ \green { \boxed{ \blue{ \sf{ \: T2 = 13 }}}}}}}

{ : { \implies{ \underline{ \sf{ \red{third \: term \: ( \:T3 \: )}}}}}} \\ { \sf{ \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   n = 3}}  \\ \:  \:  \:  \:  \:  \:  { \rightarrow{ \blue{  \sf{ \:  \: T3 = 9 + (3 - 1)4}}}} \\ \:  \:  \:  \:  \:  \:  { \rightarrow{ \blue{ \sf{ \:  \: T3 = 9 + (2 \times 4)}}}} \\  \:  \:  \:  \:  \:  \:  { \rightarrow{ \blue{ \sf{ \:  \: T3 = 9 + 8}}}} \\ \:  \:  \:  \:  \:  \:   { \rightarrow \:  \:   { \underline { \green{ \boxed{ \sf{ \blue{ T3 = 17}}}}}}}

{ : { \implies{ \underline{ \red{ \sf{fourth \: term \: ( \: T4 \: )}}}}}} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \sf{n = 4}} \\ \:  \:  \:  \:  \:  \:  { \rightarrow{ \sf{ \blue{ \:  \: T4 = 9 + (4 - 1)4}}}} \\  \:  \:  \:  \:  \:  \: { \rightarrow{ \sf{ \blue{ \:  \: T4 = 9 + (3 \times 4)}}}} \\  \:  \:  \:  \:  \:  \: { \rightarrow{ \sf{ \blue{ \:  \: T4 = 9 + 12}}}} \\  \:  \:  \:  \:  \:  \:  { \rightarrow \:   \: {  \underline{ \green{ \boxed{ \sf{ \blue{T4 = 21}}}}}}}

{ : { \implies{ \underline{ \sf{ \red{fifth \: term \: (  \: T5 \: )}}}}}} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {  \sf{n = 5}}

 { \rightarrow{ \blue{ \sf{ \:  \: T5 = 9 + (5 - 1)4}}}} \\  { \rightarrow{ \blue{ \sf{ \:  \: T5 = 9 + (4 \times 4)}}}} \\   { \rightarrow{ \blue{ \sf{ \:  \:T5 = 9 + 16}}}}  \\  { \rightarrow \:  \:  \: { \underline{ \green { \boxed{ \blue{ \sf{T5 = 25}}}}}}}</p><p>

The required A.P. is 9, 13, 17, 21, 25,.......

Similar questions