Math, asked by samardeeptoor1, 4 months ago

write an a. p whose first term is 10 and common difference is 3​

Answers

Answered by stuti2526
1

Answer:

here is your ans.

hope it helped

Attachments:
Answered by Anonymous
1

GIVEN

  • First term of AP = 10.
  • Common Difference = 3.

★To Find★

The AP.

SOLUTION

We know that,

\large{\green{\underline{\boxed{\bf{a_{n}=a+(n-1)d}}}}}

where,

  • a is the first term
  • n is the respective term
  • d is the common difference

\large{\green{\underline{\underline{\sf{1)\:The\:Second\:Term\::-}}}}}

\large\boxed{\bf{a_{n}=a+(n-1)d}}

where,

  • a = 10
  • n = 2
  • d = 3

Putting the values,

\large\implies{\sf{a_{n}=a+(n-1)d}}

\large\implies{\sf{a_{2}=10+(2-1)\times3}}

\large\implies{\sf{a_{2}=10+1\times3}}

\large\implies{\sf{a_{2}=10+3}}

\large\therefore\boxed{\bf{a_{2}=13}}

\large{\green{\underline{\underline{\sf{2)\:The\:Third\:Term\::-}}}}}

\large\boxed{\bf{a_{n}=a+(n-1)d}}

where,

  • a = 10
  • n = 3
  • d = 3

Putting the values,

\large\implies{\sf{a_{n}=a+(n-1)d}}

\large\implies{\sf{a_{3}=10+(3-1)\times3}}

\large\implies{\sf{a_{3}=10+2\times3}}

\large\implies{\sf{a_{3}=10+6}}

\large\therefore\boxed{\bf{a_{3}=16}}

\large{\green{\underline{\underline{\sf{The\:Fourth\:Term\::-}}}}}

\large\boxed{\bf{a_{n}=a+(n-1)d}}

where,

  • a = 10
  • n = 4
  • d = 3

Putting the values,

\large\implies{\sf{a_{n}=a+(n-1)d}}

\large\implies{\sf{a_{4}=10+(4-1)\times3}}

\large\implies{\sf{a_{4}=10+3\times3}}

\large\implies{\sf{a_{4}=10+9}}

\large\therefore\boxed{\bf{a_{4}=19}}

Like this it will go on.

\large{\green{\underline{\boxed{\therefore{\bf{The\:AP\:is\:10, 13,16,19,.......}}}}}}

Similar questions