Computer Science, asked by tanu328, 10 months ago

write an algorithm to find the difference of two numbers A and B where a is greater than b​

Answers

Answered by krrew
11

Answer:

Explanation:

Examples:

Input : a = 21, b = 5

Output : 2

The answers of the Modular Equation are

8 and 16 since 21 % 8 = 21 % 16 = 5 .

Here 3 cases arises :

1.If ( a < b ) then there will be no answer .

2.f ( a = b ) then all the numbers greater than a are the answer so there will be infinite solutions possible.

3.If ( a > b ) Suppose x is an answer to our equation. Then x divides (a – b). Also since a % x = b then b < x. These conditions are necessary and sufficient as well. So the answer is number of divisors of a – b which are strictly greater than b which can be solved in O(sqrt( a-b )). Here only one case arises which we have to deal separately when (a-b) is perfect square then we will add its square root two times so we have to subtract one times, if this case arises.

C ++ programme

// CPP program to find x such that a % x is equal

// to b.

#include <bits/stdc++.h>

using namespace std;

 

void modularEquation(int a, int b)

{

   // if a is less than b then no solution

   if (a < b) {

       cout << "No solution possible " << endl;

       return;

   }

 

   // if a is equal to b then every number

   // greater than a will be the solution

   // so its infinity

   if (a == b) {

       cout << "Infinite Solution possible " << endl;

       return;

   }

 

   // all resultant number should be greater than

   // b and (a-b) should be divisible by resultant

   // number

 

   // count variable store the number of values

   // possible

   int count = 0;

   int n = a - b;

   int y = sqrt(a - b);

   for (int i = 1; i <= y; ++i) {

       if (n % i == 0) {

 

           // checking for both divisor and quotient

           // whether they divide ( a-b ) completely

           // and greater than b .

           if (n / i > b)

               count++;

           if (i > b)

               count++;

       }

   }

 

   // Here y is added twice in the last iteration

   // so 1 y should be decremented to get correct

   // solution

   if (y * y == n && y > b)

       count--;

 

   cout << count << endl;

}

 

// Driver code

int main()

{

   int a = 21, b = 5;

   modularEquation(a, b);

   return 0;

}

Java Programme

// Java program to find x such that  

// a % x is equal to b.

import java.io.*;

class GFG {

     

static void modularEquation(int a, int b)

{

   // if a is less than b then no solution

   if (a < b) {

       System.out.println("No solution possible ");

       return;

   }

 

   // if a is equal to b then every number

   // greater than a will be the solution

   // so its infinity

   if (a == b) {

       System.out.println("Infinite Solution possible ");

       return;

   }

 

   // all resultant number should be greater

   // than b and (a-b) should be divisible  

   // by resultant number

 

   // count variable store the number of

   // values possible

   int count = 0;

   int n = a - b;

   int y = (int)Math.sqrt(a - b);

   for (int i = 1; i <= y; ++i) {

       if (n % i == 0) {

 

           // checking for both divisor and

           // quotient whether they divide

           // ( a-b ) completely and  

           // greater than b .

           if (n / i > b)

               count++;

           if (i > b)

               count++;

       }

   }

 

   // Here y is added twice in the last  

   // iteration so 1 y should be decremented

   // to get correct solution

   if (y * y == n && y > b)

       count--;

 

   System.out.println(count);

}

 

// Driver code

public static void main(String[] args)

{

   int a = 21, b = 5;

   modularEquation(a, b);

}

}

 

Answered by shubhradipgupta
7

Steps :-

Start

Write the first number.

Write the second number

Find the difference

Display the sum

Stop

Similar questions