Math, asked by srinidhi55, 5 months ago

write area of rhombus and prove it
guys pls it's urjent​


poornasai713: hi
poornasai713: please reply

Answers

Answered by renubaipl
1

Answer:

d1 = length of diagonal 1. d2 = length of diagonal 2. b = length of any side. h = height of rhombus.

...

Attachments:
Answered by iTzShInNy
31

 \large \bf { \underline{\underline{ \red {ConCepT➻}}}} \:  \\  \\  \small  \bf Here \: \: in  \: this \: query \: , It \: says \: to \:write \: the \:   \\ \small \bf  \pink{area \: of  \: rhombus} \: and \: also \: to \: \pink{ prove \: }it.  \\  \small \bf First  \: of  \: all \: the \: area \: of \: rhombus \: can \: be \: calculated \\  \small \bf \: using \: three \: ways -  \\   \\  \small\ast \:  \boxed{ \bf \green{ Using \:  base  \: and\: height }} \\  \\  \small \ast \boxed{ \bf \green{Using \: diagonals}} \\  \\   \small\ast \boxed{ \bf \green{Using \: trigonometry}} \:  \\  \\

★━━━━━━━━━━━━━━━━━★

\large \bf { \underline{\underline{ \red {Formula➻}}}}

\small\bigstar \:  \boxed{ \bf \red{ Using \:  base  \: and\: height }}\longrightarrow  \sf Area=Base \times Height\\  \\  \small \bigstar \boxed{ \bf \red{Using \: diagonals}}\longrightarrow \sf Area= \frac{1}{2}  \times  d_{1} \times  d_{2} \\  \\   \small\bigstar \boxed{ \bf \red{Using \: trigonometry}}\longrightarrow \:  \sf Area=  {b}^{2}  \times  \sin(a)  \\  \\

★━━━━━━━━━━━━━━━━━★

 \\  \\

 \small \bf \: As \: there \: are  \: 3 \:  formula \: to  \: find \: the \: rhombus \\  \small \bf I \:  would \:  just \: prove \: the \: rhombus \: having \: diagonals \\

★━━━━━━━━━━━━━━━━━★

\large \bf { \underline{\underline{ \red {DiaGraM➻}}}}

  • In the attachment.
  • It is not from any sources. Created by myself.

★━━━━━━━━━━━━━━━━━★

 \\  \\

\large \bf { \underline{\underline{ \red {To \: ProVe➻}}}}

 \\

Here

ㅤㅤABCD be a rhombus and O be the point of intersection of two diagonals where DB is a diagonal of the rhombus as \bf d_{1} and AC is a diagonal of the rhombus as \bf d_{2}

 \\

 \\

 \bf\large \tt\blue➦  Area \: of \: rhombus = 4 \times  \frac{1}{2}  \times  Area  \: of \: ∆  \: AOB \:sq.units \\  \bf \large \tt\blue➦ Area \: of \: rhombus = 4 \times  \frac{1}{2}  \times  d_{1} \times  d_{2} \: sq.units\\   \large\boxed{\tt  Or}  \\ \bf\large \tt\blue➦  Area \: of \: rhombus = 4 \times  \frac{1}{2}  \times AO \times OB \:sq.units\\  \bf\large \tt\blue➦  Area \: of \: rhombus = 4 \times   \frac{1}{2}  \times  \frac{1}{2}  \times  d_{1} \times  \frac{1}{2}  \times  d_{2} \:sq.units \\  \bf \large \tt\blue➦ Area \: of \: rhombus = \cancel 4 \times  \frac{1}{ \cancel8 {}^{2} }  \times  d_{1} \times  d_{2}\:sq.units \\  \bf \large \tt\blue➦ Area \: of \: rhombus =  \frac{1}{2} \times   d_{1} \times  d_{2} \\

\large \tt\blue { \underline{proved }\:  }\huge✔

★━━━━━━━━━━━━━━━━━★

\\  \bigstar{ \underline{ \underline  \pink{  \sf★@iTzShInNy☆}}} \bigstar \\  \\

Attachments:
Similar questions