Math, asked by lokitagedam, 6 months ago

Write [cremetr] the trigonometric identities and prove cremetrically any one

Answers

Answered by archiro
1

Step-by-step explanation:

Proving Trigonometric Identities - Basic

Trigonometric identities are equalities involving trigonometric functions. An example of a trigonometric identity is

\sin^2 \theta + \cos^2 \theta = 1.

sin

2

θ+cos

2

θ=1.

In order to prove trigonometric identities, we generally use other known identities such as Pythagorean identities.

Prove that (1 - \sin x) (1 +\csc x) =\cos x \cot x.(1−sinx)(1+cscx)=cosxcotx.

We have

(1 - \sin x) (1 +\csc x)=(1 - \sin x)\left(1 + \frac{1}{\sin x} \right).

(1−sinx)(1+cscx)=(1−sinx)(1+

sinx

1

).

Expanding the brackets, we get

\begin{aligned} 1+ \frac{1}{\sin x} - \sin x -1 &=\frac{1}{\sin x} -\sin x\\\\ &=\frac{1-\sin^{2} x}{\sin x}\\\\ &=\frac{\cos^{2} x}{\sin x}\\\\ &=\cos x \frac{\cos x}{\sin x}\\\\ &=\cos x \cot x. \ _\square \end{aligned}

1+

sinx

1

−sinx−1

=

sinx

1

−sinx

=

sinx

1−sin

2

x

=

sinx

cos

2

x

=cosx

sinx

cosx

=cosxcotx.

Prove that \dfrac{\cos^3 x + \sin^3 x}{\cos x + \sin x} + \dfrac{\cos^3 x - \sin^3 x}{\cos x - \sin x} = 2.

cosx+sinx

cos

3

x+sin

3

x

+

cosx−sinx

cos

3

x−sin

3

x

=2.

As we know that a^3 - b^3 = (a + b)\big(a^2 + b^2 - ab\big),a

3

−b

3

=(a+b)(a

2

+b

2

−ab), we can use it to prove this:

\begin{aligned} \dfrac{\cos^3 x + \sin^3 x}{\cos x + \sin x} + \dfrac{\cos^3 x - \sin^3 x}{\cos x - \sin x} &= \dfrac{(\cos x + \sin x)(\cos^2 x + \sin^2 x - \sin x \cos x)}{\cos x + \sin x} + \dfrac{(\cos x - \sin x)(\cos^2 x + \sin^2 x + \sin x \cos x)}{\cos x - \sin x} \\ \\ &= 2(\sin^2 x + \cos^2 x) + \sin x \cos x - \sin x \cos x \\ \\ &= 2.\ _ \square \end{aligned}

cosx+sinx

cos

3

x+sin

3

x

+

cosx−sinx

cos

3

x−sin

3

x

=

cosx+sinx

(cosx+sinx)(cos

2

x+sin

2

x−sinxcosx)

+

cosx−sinx

(cosx−sinx)(cos

2

x+sin

2

x+sinxcosx)

=2(sin

2

x+cos

2

x)+sinxcosx−sinxcosx

=2.

please mark me branilest.

Similar questions