write different types of auxin and write it's functi
on
Answers
Answer:
Five naturally occurring (endogenous) auxins in plants include indole-3-acetic acid, 4-chloroindole-3-acetic acid, phenylacetic acid, indole-3-butyric acid, and indole-3-propionic acid. ...
Synthetic auxin analogs include 1-naphthaleneacetic acid, 2,4-dichlorophenoxyacetic acid (2,4-D), and many others.
hope its help you
Answer:
I hope It's helps you and plz mark me as brainlistand thank me, follow me
Explanation:
Auxin Definition
An auxin is a plant hormone derived from the amino acid tryptophan. An auxin may be one of many molecules, but all auxin molecules are involved in some sort of cellular regulation. Auxin molecules are one of five major types of plant hormone. The other major groups are the gibberellins, cytokinins, ethylene, and abscisic acid. Auxin was the first of these groups to be identified, and was chemically isolated in the 1930’s
Auxin Function
The auxin group of hormones has a wide range of uses in a plant. Auxin molecules are found in all tissues in a plant. However, they tend to be concentrated in the meristems, growth centers which are at the forefront of growth. These centers release auxin molecules, which are then distributed towards the roots. In this way, the plant can coordinate its size, and the growth and development of different tissues based on the gradient of the auxin concentration.
Auxin affects many different cellular processes. At the molecular level, auxin molecules can affect cytoplasmic streaming, the movement of fluids within a cell, and even the activity of various enzymes. This gives auxin direct control over the growth, development, and proliferation of individual cells within the plant. The auxin gradient directly affects processes such as flower initiation, fruit development, and even tuber and bulb formation. Even on a daily basis, auxin levels affect processes such as phototropism, which allows the plant to follow the sun and gain the most energy. The auxin controls this process by concentrating in the side of the plant away from the sun. This causes changes in the cells, which bend the plant toward the light.
Another important feature which auxin gradients provide many plants is apical dominance. Apical dominance is formed when a single meristem is growing faster and more efficiently. Eventually, the auxin released from this meristem inhibits any new shoots from budding off below it. If the stem is cut off, many new shoot will erupt below the stem, as the auxin gradient has been disrupted and the system must create a new leading shoot. The auxin gradient, when established, determines how fast internodes grow, which determines the height of the plant. When discussing the function of the auxin molecules in a plant, it is almost easier to discuss the things they do not control.