Write down some benefits of using digital electronics over analogue electronics?
Answers
Answer:
signal is an electromagnetic or electrical current that carries data from one system or network to another. In electronics, a signal is often a time-varying voltage that is also an electromagnetic wave carrying information, though it can take on other forms, such as current. There are two main types of signals used in electronics: analog and digital signals. This article discusses the corresponding characteristics, uses, advantages and disadvantages, and typical applications of analog vs. digital signals. Analog Signal An analog signal is time-varying and generally bound to a range (e.g. +12V to -12V), but there is an infinite number of values within that continuous range. An analog signal uses a given property of the medium to convey the signal’s information, such as electricity moving through a wire. In an electrical signal, the voltage, current, or frequency of the signal may be varied to represent the information. Analog signals are often calculated responses to changes in light, sound, temperature, position, pressure, or other physical phenomena. When plotted on a voltage vs. time graph, an analog signal should produce a smooth and continuous curve. There should not be any discrete value changes (see Figure 1).
Figure 1: Analog Signal
Digital Signal A digital signal is a signal that represents data as a sequence of discrete values. A digital signal can only take on one value from a finite set of possible values at a given time. With digital signals, the physical quantity representing the information can be many things:
Variable electric current or voltage
Phase or polarization of an electromagnetic field
Acoustic pressure
The magnetization of a magnetic storage media
Digital signals are used in all digital electronics, including computing equipment and data transmission devices. When plotted on a voltage vs. time graph, digital signals are one of two values, and are usually between 0V and VCC (usually 1.8V, 3.3V, or 5V) (see Figure 2).Analog Electronics Most of the fundamental electronic components — resistors, capacitors, inductors, diodes, transistors, and operational amplifiers (op amps) — are all inherently analog components. Circuits built with a combination of these components are analog circuits (see Figure 3).
Figure 3: Analog Circuit
Analog circuits can be complex designs with multiple components, or they can be simple, such as two resistors that form a voltage divider. In general, analog circuits are more difficult to design than digital circuits that accomplish the same task. It would take a designer who is familiar with analog circuits to design an analog radio receiver, or an analog battery charger, since digital components have been adopted to simplify those designs. Analog circuits are usually more susceptible to noise, with “noise” being any small, undesired variations in voltage. Small changes in the voltage level of an analog signal can produce significant errors when being processed. Analog signals are commonly used in communication systems that convey voice, data, image, signal, or video information using a continuous signal. There are two basic kinds of analog transmission, which are both based on how they adapt data to combine an input signal with a carrier signal. The two techniques are amplitude modulation and frequency modulation. Amplitude modulation (AM) adjusts the amplitude of the carrier signal. Frequency modulation (FM) adjusts the frequency of the carrier signal. Analog transmission may be achieved via many methods: