Math, asked by harshitha0508, 5 months ago


Write down the coordinate of the point P that divides the line joining A (-4,1) and B
(17,10) in the ratio 1:2. In what ratio does the y axis divide the line AB​

Answers

Answered by Anonymous
0

Answer:

(i) Let P(x,y) divides the line segment joining the points A(−4,1),B(17,10) in the ratio 1:2,

Here, X  

1

​  

=−4,y  

1

​  

=1

x  

2

​  

=17,y  

2

​  

=10

m:n=1:2

∴ By section formula, x=(mx  

2

​  

+nx  

1

​  

)/(m+n)

∴x=(1×17+2×−4)/(1+2)

∴x=(17+(−8))/3

∴x=9/3

∴c=3.

By section formula y=(my  

2

​  

+ny  

1

​  

)/(m+n)

∴y=(1×10+2×1)/(1+2)

∴y=(10+2)/3

y=12/3=4.

Hence the co-ordinates of the point P are (3,4).

(ii) Since O is the origin, the co-ordinates of O are (0,0).

By distance formula, d(OP)=  

[(x  

2

​  

−x  

1

​  

)  

2

+(y  

2

​  

−y  

1

​  

)  

2

]

​  

 

∴d(OP)=  

[(0−3)  

2

+(0−4)  

2

]

​  

 

∴d(OP)=  

[(3)  

2

+(4)  

2

]

​  

 

∴d(OP)=  

(9+16)

​  

 

∴d(OP)=  

25

​  

=5.

Hence the distance OP is 5 units.

(iii) Let m:n be the ratio in which Y axis divide the line AB.

Since, AB touches Y axis, its x co-ordinate will be zero,

Here x  

1

​  

=−4,y  

1

​  

=1

x  

2

​  

=17,y  

2

​  

=10

∴ By section formula, x=(mx  

2

​  

+nx  

1

​  

)/(m+n)

∴0=(m×17+n×−4)/(m+n)

∴0=(17m−4n)/(m+n)

⇒17m−4n=0

⇒17m=4n

⇒m/n=4/17

∴m:n=4:17

Hence the ration in which Y axis divide line AB is 4:17.

Step-by-step explanation:

Similar questions