Write down the expression of de-broglie wavelength for helium atom at absolute temperature T
Answers
Answered by
2
Answer:
De Broglie derived his equation using well established theories through the following series of substitutions:
De Broglie first used Einstein's famous equation relating
matter and energy:
\[ E = mc^2 \label{0}\]
with
\(E\) = energy,
\(m\) = mass,
\(c\) = speed of light
Using Planck's theory which states every quantum of a wave has a discrete amount of energy given by Planck's equation:
\[ E= h \nu \label{1}\]
with
\(E\) = energy,
\(h\) = Plank's constant (6.62607 x 10 -34 J s),
\(\nu\)= frequency
Since de Broglie believed particles and wave have the same traits, he hypothesized that the two energies would be equal:
\[ mc^2 = h\nu \label{2}\]
Similar questions