Math, asked by kavyasujith, 20 days ago

write down the first four terms of the sequence whose general term is t1=2, tn=tn-1+5, n>=2​

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given that,

\rm \: t_1 = 2 \\

and

\rm \: t_n = t_{n - 1} + 5 , \:  \:  \: n \geqslant 2\\

So, Substitute n = 2, we get

\rm \: t_2 = t_{2 - 1} + 5 \\

\rm \: t_2 = t_{1} + 5 \\

\rm \: t_2 = 2+ 5 \\

\rm\implies \:\rm \: t_2 = 7 \\

Now, Substituting n = 3, we get

\rm \: t_3 = t_{3 - 1} + 5 \\

\rm \: t_3 = t_{2} + 5 \\

\rm \: t_3 = 7 + 5 \\

\rm\implies \:\rm \: t_3 =12 \\

Now, On substituting n = 4, we get

\rm \: t_4 = t_{4 - 1} + 5 \\

\rm \: t_4 = t_{3} + 5 \\

\rm \: t_4 = 12+ 5 \\

\rm\implies \:\rm \: t_4 = 17 \\

Hence, The first four term of the sequence are

\rm \: t_1 = 2 \\

\rm \: t_2 = 7 \\

\rm \: t_3 = 12 \\

\rm \: t_4 = 17 \\

\rule{190pt}{2pt}

Additional Information :-

1. Arithmetic mean between two positive real numbers a and b is given by

\boxed{\sf{  \:\rm \: AM \:  =  \:  \frac{a  + b}{2}  \:  \: }} \\

2. Geometric mean between two positive real numbers a and b is given by

\boxed{\sf{  \:\rm \: GM \:  =  \:  \sqrt{ab}  \:  \: }} \\

3. Harmonic mean between two positive real numbers a and b is given by

\boxed{\sf{  \:\rm \: HM =  \frac{2ab}{a + b} \:  \: }} \\

4. Relationship between Arithmetic mean, Geometric mean and Harmonic mean

\boxed{\sf{  \:\rm \: AM \:  \geqslant  \: GM \:   \geqslant  \: HM \:  \: }} \\

\boxed{\sf{  \:\rm \:  {GM}^{2}  \:  =  \: AM \:  \times  \: HM \:  \: }} \\

Answered by maheshtalpada412
2

Step-by-step explanation:

 \color{maroon} \pmb{\[ \begin{aligned} \tt T_{1}-2, T_{n} & \tt=T_{n-1}+5, n \geq 2 \\ \tt \Rightarrow \quad T_{2} & \tt=T_{2-1}+5 \\ & \tt=T_{1}+5=2+5=7 \\ \tt T_{3} & \tt=T_{3-1}+5 \\ & \tt=T_{2}+5=7+5=12 \\ \tt \text { and } T_{4} & \tt=T_{4-1}+5 \\ & \tt=T_{3}+5=12+5=17 \end{aligned} \] }

 \color{blue}{ \text{\(  \therefore \) Ist four terms are 2, 7,12 and \( \tt 17 .  \)}}

Similar questions