write down the kinematic equation for angular motion.
Answers
Explanation:
Kinematics of Rotational Motion
LEARNING OBJECTIVES
By the end of this section, you will be able to:
Observe the kinematics of rotational motion.
Derive rotational kinematic equations.
Evaluate problem solving strategies for rotational kinematics.
Just by using our intuition, we can begin to see how rotational quantities like θ, ω, and α are related to one another. For example, if a motorcycle wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly and rotates through many revolutions. In more technical terms, if the wheel’s angular acceleration α is large for a long period of time t, then the final angular velocity ω and angle of rotation θ are large. The wheel’s rotational motion is exactly analogous to the fact that the motorcycle’s large translational acceleration produces a large final velocity, and the distance traveled will also be large.
Kinematics is the description of motion. The kinematics of rotational motion describes the relationships among rotation angle, angular velocity, angular acceleration, and time. Let us start by finding an equation relating ω, α, and t. To determine this equation, we recall a familiar kinematic equation for translational, or straight-line, motion:
v
=
v
0
+
a
t