Physics, asked by gogoipallabi37, 3 months ago

write down the Maxwell's electromagnetic equations in differential and integral form​

Answers

Answered by Anonymous
5

Maxwell's electromagnetic equations:

Maxwell's first equation:

Integral form:

 \int \vec{E}. d \vec{A} = \frac{q} {\epsilon_0}

Differential form:

\vec{ \triangledown}.\vec{E} = \frac{p} {\epsilon_0}

Maxwell's second equation:

Integral form:

 \int \vec{B}. d \vec{A} = 0

Differential form :

 \vec{\triangledown}.\vec{B} =0

Maxwell's third equation:

Integral form:

 \int \vec{E}. d \vec{A} = \frac{-d} {dt}\int \vec{B}. d \vec{A}

Differential form :

 \vec{\triangledown}\times \vec{E} = \frac{-d \vec{B}} {dt}

Maxwell's fourth equation:

Integral form:

 \int \vec{B}. d \vec{S} = \mu_0 i

Differential form:

 \vec{\triangledown}\times \vec{B} =\mu_0j

Similar questions