Science, asked by st237140, 7 months ago

write down the microscope pic explanation for liquid and gas​

Answers

Answered by yashrajchoudhary5a2
0

Answer:

solids

Explanation:

solids liquid and gas

Answered by rocky8878
16

Answer:

Gases, liquids, and especially solids surround us and give form to our world. Chemistry at its most fundamental level is about atoms and the forces that act between them to form larger structural units. But the matter that we experience with our senses is far removed from this level. This unit will help you see how these macroscopic properties of matter depend on the microscopic particles of which it is composed.

Solids, Liquids and Gases

What distinguishes solids, liquids, and gases– the three major states of matter— from each other? Let us begin at the microscopic level, by reviewing what we know about gases, the simplest state in which matter can exist. At ordinary pressures, the molecules of a gas are so far apart that intermolecular forces have an insignificant effect on the random thermal motions of the individual particles. As the temperature decreases and the pressure increases, intermolecular attractions become more important, and there will be an increasing tendency for molecules to form temporary clusters. These are so short-lived, however, that even under extreme conditions, gases cannot be said to possess “structure” in the usual sense.

The contrast at the microscopic level between solids, liquids and gases is most clearly seen in the simplified schematic views above. The molecular units of crystalline solids tend to be highly ordered, with each unit occupying a fixed position with respect to the others. In liquids, the molecules are able to slip around each other, introducing an element of disorder and creating some void spaces that decrease the density. Gases present a picture of almost total disorder, with practically no restrictions on where any one molecule can be.

Having lived our lives in a world composed of solids, liquids, and gases, few of us ever have any difficulty deciding into which of these categories a given sample of matter falls. Our decision is most commonly based on purely visual cues:

  1. a gas has no definite boundaries other than those that might be imposed by the walls of a confining vessel.
  2. Liquids and solids possess a clearly delineated phase boundary that gives solids their definite shapes and whose light-reflecting properties enable us to distinguish one phase from another.
  3. Solids can have any conceivable shape, and their surfaces are usually too irregular to show specular (mirror-like) reflection of light. Liquids, on the other hand, are mobile; except when in the form of tiny droplets, liquids have no inherent shape of their own, but assume the shape of their container and show an approximately flat upper surface

Our experience also tells us that these categories are quite distinct; a phase, which you will recall is a region of matter having uniform intensive properties, is either a gas, a liquid, or a solid. Thus the three states of matter are not simply three points on a continuum; when an ordinary solid melts, it usually does so at a definite temperature, without apparently passing through any states that are intermediate between a solid and a liquid.

Limiting Behavior

Although these common-sense perceptions are usually correct, they are not infallible, and in fact there are solids such as glasses and many plastics that do not have sharp melting points, but instead undergo a gradual transition from solid to liquid known as softening, and when subject to enough pressure, solids can exhibit something of the flow properties of liquids (glacial ice, for example).

A more scientific approach would be to compare the macroscopic physical properties of the three states of matter, but even here we run into difficulty. It is true, for example, that the density of a gas is usually about a thousandth of that of the liquid or solid at the same temperature and pressure; thus one gram of water vapor at 100°C and 1 atm pressure occupies a volume of 1671 mL; when it condenses to liquid water at the same temperature, it occupies only 1.043 mL.

gas22,400 cm3/mol total volume

(42 cm3/mol excluded volume)liquid16.8 cm3/molsolid13.9 cm3/mol

It compares the molar volumes of neon in its three states. For the gaseous state, P = 1 atm and T = 0°C. The excluded volume is the volume actually taken up by the neon atoms according to the van der Waals equation of state model. It is this extreme contrast with the gaseous states that leads to the appellation “condensed states of matter” for liquids and solids. However, gases at very high pressures can have densities that exceed those of other solid and liquid substances, so density alone is not a sufficiently comprehensive criterion for distinguishing between the gaseous and condensed states of matter. Similarly, the density of a solid is usually greater than that of the corresponding liquid at the same temperature and pressure, but not always: you have certainly seen ice floating on water!

Similar questions