Write down the sum of the series ;
2² + 4² + 6² + ………………+ (2n)²
Answers
Answer:
answer 2n(n+1)(2n+6)/3
Step-by-step explanation:
1²+2²+3².......+(2n) ²
1+4+9+16+36.....n²
,(n(n+1)(2n+6)/6
(4n(n+1)(2n+6)/6
2n(n+1)(2n+6)/3
Answer:
2 n ( n +1 ) ( 2n + 1 ) / 3
Step-by-step explanation:
To find---> Value of
2² + 4² + 6² +..............+ (2n)²
Solution--->
ATQ,
2² + 4² + 6² + ..............................+ ( 2n )²
= ( 2 × 1 )² + ( 2 × 2 )² + ( 2 × 3 )² +............. +( 2 × n )²
= 2² × 1² + 2² × 2² + 2² × 3² +...............+2² × n²
= 2² ( 1² + 2² + 3² +................................ + n² )
We have a formula
1² + 2² + 3² +...........+n² =n (n+1) (2n+1) / 6
Using it we get,
= 4 { n ( n + 1 ) ( 2n + 1 ) / 6 }
= 4 n ( n + 1 ) ( 2n + 1 ) / 6
= 2 n ( n + 1 ) ( 2n + 1 ) / 3
Additional formulee--->
1) 1+2+3........+n = n ( n + 1 ) / 2
2) 1³+2³+3³+........+n³ = n² ( n + 1 )² / 4
3) Sum of n terms of AP
Sₙ = n/2 {2a + ( n - 1 ) d }
4) Sum of n terms of GP
Sₙ = a ( rⁿ - 1 ) / ( r - 1 )
(5) Sum of infinite terms of GP
S(infinite terms ) = a / ( 1 - r )
↪FOLLOW ME
↪MARK BRAINLIEST
( ´ ▽ ` )ノ