Physics, asked by chaitaalex, 9 months ago

write down thr dimensions of each of the following in terms of mass, length , time and charge a ) magnetic flux (b) modulus of rigidity​

Answers

Answered by 3365agn
1

Answer:

if it is help full mark as brilliant

Explanation:

a)(a) magnetic flux , ϕ=Bs=[F][qv](s)

∴[ϕ]=[Fsqv]=[MLT−2L−2QLT−1]

=[ML2T−1Q−1]

(b) [kindly Modulus] = (FA]=(MLT−1L2]

=[ML−1T−2]

Answered by DARLO20
10

\sf{\purple{\underline{\underline{\red{\huge{Answer:-}}}}}}

1) The Dimension Of Magnetic Flux :-

\tt{\green{\boxed{Magnetic\:Flux\:=\:Magnetic\:field\:\times\:Area\:}}}

\tt{\pink{\implies\:Magnetic\:Flux\:=\:[M^1\:T^{-2}\:A^{-1}][L^2]\:}}

\bigstar\:\tt{\red{\boxed{\implies\:Magnetic\:Flux\:=\:[M^1\:L^2\:T^{-2}\:A^{-1}]\:}}}

\bigstar\:\tt{\green{\boxed{\implies\:Magnetic\:Flux\:=\:[M^1\:L^2\:T^{-1}\:Q^{-1}]}}}

2) The Dimension Of Modulus Of Rigidity :-

\tt{\purple{\boxed{\:Modulus\:Of\:Rigidity\:=\:{\dfrac{shear\:stress}{shear\:strain}}\:}}}

\tt{\blue{\implies\:Modulus\:Of\:Rigidity\:=\:{\dfrac{[M^1\:L^{-1}\:T^{-2}]}{[M^0\:L^0\:T^0]}}\:}}

\bigstar\:\tt{\orange{\boxed{\implies\:Modulus\:Of\:Rigidity\:=\:[M^1\:L^{-1}\:T^{-2}]\:}}}

Similar questions