Write each of the following expressions as log N. Determine the value N. (you can assume the base is 10, but the result are identical which ever base is
used)
1)log 16 - log 2
2) 3 log 4
3) 2 log 3 - 3 log 2
4) log 243 + log 1
5) log 10 + 2 log 3 - log 2
Answers
Answered by
61
1)log 16 - log 2 = log (16/2) = log 8 Here N = 8
2) 3 log 4 = log 4³ = log 64 Here N = 64
3) 2 log 3 - 3 log 2 = log 3² - log 2³ = log 9 - log 8 = log (9/8) ..Here N = 9/8
4) log 243 + log 1 = log (243*1) = log 243 Here N = 243
5) log 10 + 2 log 3 - log 2 = log 10 + log 3² - log 2
= log 10 + log 9 - log 2 = log (10*9) - log 2 = log 90 - log 2 = log (90/2) = log 45....Here N = 45
2) 3 log 4 = log 4³ = log 64 Here N = 64
3) 2 log 3 - 3 log 2 = log 3² - log 2³ = log 9 - log 8 = log (9/8) ..Here N = 9/8
4) log 243 + log 1 = log (243*1) = log 243 Here N = 243
5) log 10 + 2 log 3 - log 2 = log 10 + log 3² - log 2
= log 10 + log 9 - log 2 = log (10*9) - log 2 = log 90 - log 2 = log (90/2) = log 45....Here N = 45
Answered by
26
(1)log 16 - log 2 = log (16/2) = log 8 so N = 8(log m-log n=log m/n
(2) 3 log 4 = log 4³ = so N = 64(mlogn=logn^m)
(3) 2 log 3 - 3 log 2 = log 3² - log 2³ = log 9 - log 8 = log (9/8) so = 9/8(law mentioned above
(4) log 243 + log 1 = log (243*1) = log 243 so N = 243(log m+log n=log mn)
(5) log 10 + 2 log 3 - log 2 = = log 10 + log 9 - log 2 = log (10*9) - log 2 = log 90 - log 2 = = log 45 so N = 45(log m-log n=log m/n)
these laws are applicable only to briugs logarithms where base is 10
(2) 3 log 4 = log 4³ = so N = 64(mlogn=logn^m)
(3) 2 log 3 - 3 log 2 = log 3² - log 2³ = log 9 - log 8 = log (9/8) so = 9/8(law mentioned above
(4) log 243 + log 1 = log (243*1) = log 243 so N = 243(log m+log n=log mn)
(5) log 10 + 2 log 3 - log 2 = = log 10 + log 9 - log 2 = log (10*9) - log 2 = log 90 - log 2 = = log 45 so N = 45(log m-log n=log m/n)
these laws are applicable only to briugs logarithms where base is 10
Similar questions