Write equation of line passing through the point A(-3,5) ,B(4,-7)
Answers
Answer
AnswerWe need to find the equation of the line passing through the points A(−3,4) and B(4,5).
AnswerWe need to find the equation of the line passing through the points A(−3,4) and B(4,5).The equation o
Here (−3,4)≡(x
Here (−3,4)≡(x 1
Here (−3,4)≡(x 1
Here (−3,4)≡(x 1 ,y
Here (−3,4)≡(x 1 ,y 1
Here (−3,4)≡(x 1 ,y 1
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 =
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 =
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 = 1
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 = 1y−4
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 = 1y−4
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 = 1y−4
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 = 1y−4 ⇒x+3=7(y−4)
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 = 1y−4 ⇒x+3=7(y−4)⇒x+3=7y−28
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 = 1y−4 ⇒x+3=7(y−4)⇒x+3=7y−28⇒x−7y+3+28=0
Here (−3,4)≡(x 1 ,y 1 ),(4,5)≡(x 2 ,y 2 )∴ 4+3x+3 = 5−4y−4 ⇒ 7x+3 = 1y−4 ⇒x+3=7(y−4)⇒x+3=7y−28⇒x−7y+3+28=0⇒x−7y+31=0