Physics, asked by pp5115222, 2 months ago

write expression for electric feild due to point charge in scalar and vector form​

Answers

Answered by santoshgupta9495
0

Electric Intensity due to a point charge:-

F=Eq0 [force experienced by the charge q0]

F=r2kqq0 [according to collomb's law]

r= distance between the q and q0 source charge

we know, E=q0F

E=q01×r2kqq0

E=r2kq we know k=4π∈01

Final Expression →E=4π∈01×r2q

∈0= dielectric constant of letan k space 

q= point charge

$$r=distance between two point charge 

If there is a medium of dielectric constant ∈r then,

E=4π∈0∈r1.

HOPE IT HELPS

Answered by TaeTaePopsicle
2

Answer:

Consider the electric potential due to a point charge q, As we move from point A, at distance rA from the charge q, to point B, at distance rB from the charge q, the change in electric potential is

ΔV

BA

=V

B

−V

A

=−∫

A

B

E.ds

E.ds=[k

r

2

q

]

r

^

.ds

r

^

.ds=dr

Only the radial distance r determines the work done or the potential. We can move through any angle we like and, as long as the radial distance remains constant, no work is done or there is no change in the electric potential.

ΔV

BA

=V

B

−V

A

=−∫

r

A

r

B

Edr=−∫

r

A

r

B

[k

r

2

q

dr]

ΔV

BA

=V

B

−V

A

=−kq[(−1)r

−1

]

r

A

r

B

ΔV

BA

=V

B

−V

A

=kq[

r

B

1

r

B

1

]

This is the change in electric potential due to a point charge as we move from rA to rB.

We could ask about the change in electric potential energy as we move a charge q' from radius rA to rB due to a point charge q

ΔU

BA

=kq

q[

r

B

1

r

A

1

]

As with gravitational potential energy, it is more convenient -- and, therefore, useful -- to talk about the electric potential energy or the electric potential relative to some reference point. We will choose that reference point to be infinity. That is,

r

A

=∞

That means we can then write the electric potential at some radius r as V=kq

r

1

Similar questions