Math, asked by meroinvest6, 1 month ago

Write f(x)=8x2+9x3+8+7x in the standardterm of polynomial.

Answers

Answered by shantanu7531
0

Answer:

Total Distance = 2000 km

Time Taken while going = 24 hours

Time Taken while returning = 2 days = 48 hours

The formula to calculate Average speed is given as:

\boxed{ \textbf{Average Speed} = \dfrac{\textbf{Total Distance}}{\textbf{Total Time}}}

Average Speed=

Total Time

Total Distance

Total Distance Travelled by the car is:

⇒ 2000 km + 2000 km = 4000 km

Total Time taken by the car is:

⇒ 24 hours + 48 hours = 72 hours

Hence the average speed of the car is:

\begin{gathered}\implies \text{Average Speed} = \dfrac{4000\:\:km}{72\:\:hrs}\\\\\\\implies \boxed{ \textbf{Average Speed} = \bf{55.55\:\:km/hr}}\end{gathered}

⟹Average Speed=

72hrs

4000km

Average Speed=55.55km/hr

Answered by ZaraAntisera
1

Answer:

\mathrm{Domain\:of\:}\:8x^2+9x^3+8+7x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

\mathrm{Range\:of\:}8x^2+9x^3+8+7x:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

\mathrm{Axis\:interception\:points\:of}\:8x^2+9x^3+8+7x:\quad \mathrm{X\:Intercepts}:\:\left(-1,\:0\right),\:\mathrm{Y\:Intercepts}:\:\left(0,\:8\right)

\mathrm{Asymptotes\:of}\:8x^2+9x^3+8+7x:\quad \mathrm{None}

\mathrm{Extreme\:Points\:of}\:8x^2+9x^3+8+7x:\quad \mathrm{None}

Similar questions