Math, asked by BIKI6963, 11 months ago

Write familiar of area in double integral polar and cartesian

Answers

Answered by Anonymous
14

Answer:

hloo mate...

Double Integrals in Polar Coordinates. One of the particular cases of change of variables is the transformation from Cartesian to polar coordinate system.

Answered by Anonymous
4

 \huge{ \underline{ \bold{ᴀɴsᴡᴇʀ....{ \heartsuit}}}}

Again, just as in section on Double Integrals over Rectangular Regions, the double integral over a polar rectangular region can be expressed as an iterated integral in polar coordinates. Hence, ∬Rf(r,θ)dA=∬Rf(r,θ)rdrdθ=∫θ=βθ=α∫r=br=af(r,θ)rdrdθ.

Similar questions