Math, asked by Anonymous, 9 months ago

write four solution for each of the following equation i) 2 X + y is equal to 7​

Answers

Answered by Anonymous
13

QUESTION:-

✯.ᴡʀɪᴛᴇ ғᴏᴜʀ sᴏʟᴜᴛɪᴏɴ ғᴏʀ ᴇᴀᴄʜ ᴏғ ᴛʜᴇ ғᴏʟʟᴏᴡɪɴɢ ᴇϙᴜᴀᴛɪᴏɴ ɪ) 2 x + ʏ ɪs ᴇϙᴜᴀʟ ᴛᴏ 7

ANSWER

\Large\underline\bold{GIVEN,}

 \sf\dashrightarrow equation, 2x+y=7

\Large\underline\bold{TO\:FIND,}

 \sf\dashrightarrow  find\:any\:four\:solutions\:for\:the\:given\:equation

\Large\underline\bold{SOLUTION,}

 \sf\therefore TAKING\:x\:=0

THEN,

 \sf\therefore 2x+y=7

 \sf\implies 2 \times (0) +y=7

 \sf\implies  0+y=7

 \sf\implies y=7

\sf{\boxed{\sf{(x_1,y_1)=(0,7)}}}

 \sf\therefore TAKING\:x\:=1

THEN,

 \sf\therefore 2x+y=7

 \sf\implies 2 \times (1) +y=7

 \sf\implies  2+y=7

 \sf\implies y=7-2

 \sf\implies y=5

\sf{\boxed{\sf{(x_2,y_2)=(1,5)}}}

 \sf\therefore TAKING\:x\:=2

THEN,

 \sf\therefore 2x+y=7

 \sf\implies 2 \times (2) +y=7

 \sf\implies  4+y=7

 \sf\implies y=7-4

 \sf\implies y=3

\sf{\boxed{\sf{(x_3,y_3)=(2,3)}}}

 \sf\therefore TAKING\:x\:=6

THEN,

 \sf\therefore 2x+y=7

 \sf\implies 2 \times (6) +y=7

 \sf\implies  12+y=7

 \sf\implies y=7-12

 \sf\implies y=-5

\sf{\boxed{\sf{(x_4,y_4)=(6,-5)}}}

THEREFORE,

 \sf\therefore THE\:REQUIRED\:SOLUTIONS\:ARE,

 \sf\therefore (x_1,y_1)=(0,7)

 \sf\therefore (x_2,y_2)=(1,5)

 \sf\therefore (x_3,y_3)=(2,3)

 \sf\therefore (x_4,y_4)=(6,-5)

________________________

Answered by Anonymous
2

Answer:

2x+y=7 2 x + y = 7 are (0,7), (1,5), (2,3), (3,1). Hence, four solutions for equation x=4y x = 4 y are (0, 0), (1, 4), (-4,-1), (8, 2).

Similar questions