Math, asked by Anonymous, 4 months ago

write how to find area and perimeter in triangle,square,rectangle

Answers

Answered by Anonymous
35

\mathfrak{dear\;user}

\mathfrak{question-to\: find \:area \:,\:perimeter \:of \:square\:,\:triangle \:and \:rectangle}

\mathfrak{here\:is\:the\:solution}

\mathbb{ANSWER}

\mathbf {triangle }

\textsf{Area-1/2 x base x height }

\textsf{Area-A,Height-,Base-B}

\textsf{A=1/2 x B x H}

\textsf{Perimeter-a+b+c}

\textsf{Perimeter-,1st side-A,2nd side-B,  3rd side-C}

\textsf{P=A+B+C}

\mathbf{square}

\textsf{A-S x S}

\textsf{Area-A,Side-S}

\textsf {A=S  x  S }

\textsf{perimeter-4s }

\textsf{Perimeter-P,Side-S}

\textsf{P=4S }

\mathbf{rectangle}

\textsf{Area-L x B}

\textsf{Area-A,Length-L,Breadth-B}

\textsf{A-L x B}

\textsf{perimter-sum of all sides}

\textsf{P=2(l+b)}

\textsf{Perimeter-P,Length-L,Breadth-B}

\textsf{P=2l+2b}

\textsf{P=2(l+b)}

\mathbb{EXTRA\:INFORMATION}

\mathbf{TRIANGLE}

\textsf {A triangle is a polygon with three edges and three vertices.}

\textsf{Area: 1/2 x base x height }

\textsf{Perimeter: sum of side lengths of the triangle}

\textsf{Number of vertices: 3}

\textsf{Number of edges: 3}

\textsf{Sum of interior angles: 180}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}

\mathbf{SQUARE}

\textsf{a square is a regular quadrilateral, which means that it has four equal sides and four equal angles}

\textsf{A rectangle with two adjacent equal sides}

\textsf{A rhombus with a right vertex angle}

\textsf {A rhombus with all angles equal}

\textsf{A parallelogram with one right vertex angle and two adjacent equal sides}

\textsf{A quadrilateral with four equal sides and four right angles}

\textsf{The diagonals of a square bisect its angles.}

\textsf{Opposite sides of a square are both parallel and equal in length.}

\textsf{All four sides of a square are equal.}

\textsf {The diagonals of a square are equal.}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large x\ cm}\put(4.4,2){\bf\large x\ cm}\end{picture}

\mathbf{RECTANGLE}

\textsf{ a rectangle is a quadrilateral with four right angles}

\textsf{a parallelogram with at least one right angle}

\textsf{a parallelogram with diagonals of equal length}

\textsf{a parallelogram ABCD where triangles ABD and DCA are congruent}

\textsf{an equiangular quadrilateral}

\textsf{a quadrilateral with four right angles }

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large x cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large y cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

\to PLEASE\:DON'T\;COPY

\to CODES\:USED

\bigstar \: mathfrak\\\bigstar \: mathcal\\\bigstar \: mathbb\\\bigstar \: mathbc\\\bigstar \:textbb\\\bigstar \: textsc\\\bigstar \: textsf

\mathcal{HOPE\:IT\:HELPS}

\mathcal{BY\:BRAINLY\:ROSHAN}

Answered by Anonymous
2

Answer:

The answer

Area of triangle = 1/2 × base × height

Perimeter of triangle = a +b+c

Area of square = side ×side

perimeter of square = 4 side (4s)

Area of rectangle = Length × Breath

perimeter of rectangle = 2( length × breath )

hope \: this \: helps \: you

Similar questions