Write in detail mechanical weathering.
Answers
Mechanical weathering is the process of breaking of big rocks into little ones.This process usually happens near the surface of the planet.
hey mate here is your answer,
Mechanical Weathering
Mechanical weathering, also called physical weathering and disaggregation, causes rocks to crumble.
Water, in either liquid or solid form, is often a key agent of mechanical weathering. For instance, liquid water can seep into cracks and crevices in rock. If temperatures drop low enough, the water will freeze. When water freezes, it expands. The ice then works as a wedge. It slowly widens the cracks and splits the rock. When ice melts, liquid water performs the act of erosion by carrying away the tiny rock fragments lost in the split. This specific process (the freeze-thaw cycle) is called frost weathering or cryofracturing.
Temperature changes can also contribute to mechanical weathering in a process called thermal stress. Changes in temperature cause rock to expand (with heat) and contract (with cold). As this happens over and over again, the structure of the rock weakens. Over time, it crumbles. Rocky desert landscapes are particularly vulnerable to thermal stress. The outer layer of desert rocks undergo repeated stress as the temperature changes from day to night. Eventually, outer layers flake off in thin sheets, a process called exfoliation.
Exfoliation contributes to the formation of bornhardts, one of the most dramatic features in landscapes formed by weathering and erosion. Bornhardts are tall, domed, isolated rocks often found in tropical areas. Sugarloaf Mountain, an iconic landmark in Rio de Janeiro, Brazil, is a bornhardt.
Changes in pressure can also contribute to exfoliation due to weathering. In a process called unloading, overlying materials are removed. The underlying rocks, released from overlying pressure, can then expand. As the rock surface expands, it becomes vulnerable to fracturing in a process called sheeting.
Another type of mechanical weathering occurs when clay or other materials near rock absorb water. Clay, more porous than rock, can swell with water, weathering the surrounding, harder rock.
Salt also works to weather rock in a process called haloclasty. Saltwater sometimes gets into the cracks and pores of rock. If the saltwater evaporates, salt crystals are left behind. As the crystals grow, they put pressure on the rock, slowly breaking it apart.
Honeycomb weathering is associated with haloclasty. As its name implies, honeycomb weathering describes rock formations with hundreds or even thousands of pits formed by the growth of salt crystals. Honeycomb weathering is common in coastal areas, where sea sprays constantly force rocks to interact with salts.
Haloclasty is not limited to coastal landscapes. Salt upwelling, the geologic process in which underground salt domes expand, can contribute to weathering of the overlying rock. Structures in the ancient city of Petra, Jordan, were made unstable and often collapsed due to salt upwelling from the ground below.
Plants and animals can be agents of mechanical weathering. The seed of a tree may sprout in soil that has collected in a cracked rock. As the roots grow, they widen the cracks, eventually breaking the rock into pieces. Over time, trees can break apart even large rocks. Even small plants, such as mosses, can enlarge tiny cracks as they grow.
Animals that tunnel underground, such as moles and prairie dogs, also work to break apart rock and soil. Other animals dig and trample rock aboveground, causing rock to slowly crumble.
hope it helps