Math, asked by higioakash1112, 5 months ago

write in standard form
Z=-2-5i/3-6i​

Answers

Answered by vikkiain
7

 \frac{4}{5}  -  \frac{1}{15} i

Step-by-step explanation:

Given,  \:  \: z= \frac{2 - 5i}{3 - 6i}  \\  =  \frac{2 - 5i}{3 - 6i} \times  \frac{3 + 6i}{3 + 6i}  \\  =  \frac{(2 - 5i)(3 + 6i)}{(3)^{2}  - (6i)^{2} }  \\  =  \frac{2 \times 3 + 2 \times 6i - 5i \times 3 - 5i \times 6i}{9 - 36 {i}^{2} }  \\  =  \frac{6 + 12i - 15i - 30 {i}^{2} }{9 - 36 {i}^{2} }  \\ we \:  \: know \:  \: that \:  \:  \boxed{i =  \sqrt{ - 1} \:   =  >  \:  {i}^{2} =  - 1 } \\ Now, \:  \: putting \:  \: value \\  =  \frac{6  - 3i - 30 \times  (- 1)}{9 - 36 \times ( - 1)}  \\  =  \frac{6 - 3i + 30}{9 + 36}  \\  =  \frac{36 - 3i}{45}  \\  =  \frac{36}{45}  -  \frac{3}{45}i \\  =  \boxed{ \frac{4}{5}  -  \frac{1}{15} i}

Similar questions