Math, asked by devanandapramod14, 4 months ago

write in the form a+ib (1+3i)(1-2i)/(2+i)(4+2i)

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{(1 + 3i)(1 - 2i)}{2(2 + i)(2 + i)} =  \frac{7  + i}{2(3 + 4i)}   \\

 =  \frac{(7 + i)(3 - 4i)}{2(9 + 16)}  \\

 =  \frac{17  - 25i}{50}  \\

 =  \frac{17}{50}  -  \frac{1}{2} i \\

Answered by sandy1816
12

Step-by-step explanation:

 \frac{(1 + 3i)(1 - 2i)}{(2 + i)(4 + 2i)}  \\  \\  =  \frac{1 - 2i + 3i + 6}{8 + 4i + 4i - 2}  \\  \\  =  \frac{7 + i}{6 + 8i}  \\  \\  =  \frac{7 + i}{6 + 8i}  \times  \frac{6 - 8i}{6 - 8i}  \\  \\  =  \frac{42 - 56i + 6i + 8}{36 + 64}  \\  \\  =  \frac{50 - 50i}{100}  \\  \\  =  \frac{1 - i}{2}  \\  \\  =  \frac{1}{2}  - i \frac{1}{2}

Similar questions