Math, asked by harshitdhio333, 1 month ago

write it in simplest form


don't spam​

Attachments:

Answers

Answered by TrustedAnswerer19
42

\orange{ \boxed{ \boxed{ \begin{array}{c | c}  \underline{ \sf \: Procedure}& \underline{ \sf \: Explanation }\\  \\   \rm {tan}^{ - 1}( \sqrt{  \pink{\frac{ 1- cos \: x}{1 + cos \: x} }} ) &  \to \to \to \to \to \to \to\bf \to \: given \\  \\  & \because \bf \: 1 - cos2x = 2 {sin}^{2} x\\  & \bf \: so \: \pink{ 1 - cosx} =  \green{2 {sin}^{2}  \frac{x}{2}} \\  \rm =  {tan}^{ - 1} ( \sqrt{  \green{\frac{2 {sin}^{2} \frac{x}{2}  }{2 {cos}^{2}  \frac{x}{2} } }} )& \bf \: and \:1  + cos2x = 2 {cos}^{2}x \\  & \bf \: so \:  \pink{1 + cosx }= \green{ 2 {cos}^{2}  \frac{x}{2} }\\  \\  \rm =  {tan}^{ - 1}  \sqrt{ {tan}^{2}  \frac{x}{2} }  & \rm \because \: tanx =  \frac{sinx}{cosx} \\  \\   \rm =  {tan}^{ - 1} .tan \frac{x}{2}    & \\  \\  \rm =  \frac{x}{2}& \because \bf \:  {tan}^{ - 1}  tan \: x = x \\  \\ & \bf \: so \:  {tan}^{ - 1} tan \frac{x}{2}  =  \frac{x}{2}  \\  \\  =  \sf \: answer\end{array}}}}

Similar questions