Math, asked by naseemunnisa004, 4 days ago

write log 81 +log64+log5-log72 in the form of log n ​

Answers

Answered by nick47rubu
15

Formulae:

log a + log b = log a×b

log a - log b = log a/b

log a^n = n log a

Soln.

log 81 + log 64 + log 5 - log 72

= log 9² + log 8² + log 5 - log 72

= 2 log 9 + 2 log 8 + log 5 - log 72

= 2 ( log 9 + log 8 ) + log 5 - log 72

= 2 ( log 9×8 ) + log 5 - log 72

= 2 log 72 + log 5 - log 72

= log 72 + log 5

= log 72×5

= log 360

Answered by parulsehgal06
1

Answer:

The value of the expression

         log81+log64+log5-log72 = log360

Step-by-step explanation:

Logarithms:

  • Logarithm is the exponent or power to which a base must be raised to obtain a value.
  • Mathematically it can be expressed as
  • x is logarithm of n to the base a
  • if aˣ = n then x = logₐn
  • For example if we write 2³ = 8 then we can epress it in logarithms as 3 = log₃8

Some of the formulas used here:

  • loga+logb = log(ab)
  • loga-logb = log(a/b)
  •        xᵃ.xᵇ = xᵃ+ᵇ

         Given expression is

    log81+log64+log5-log72 = log(3)⁴+log(2)⁶+log5-log(2³×3²)

                                             = log(3⁴×2⁶×5)-log(2³×3²)

                                             = log[(3⁴×2⁶×5)/(2³×3²)]

                                             = log[3⁴×2⁶×5×2⁻³×3⁻²]

                                             = log[(3⁴×3⁻²)×(2⁶×2⁻³)×5]

                                             =  log[(3⁴⁻²)×(2⁶⁻³)×5]  

                                             = log[3²×2³×5]

                                             = log[9×8×5]

                                             = log 360

   Hence the value of the expression

              log81+log64+log5-log72 = log360

Know more about   Logarithms:

https://brainly.com/question/13590138?referrer=searchResults

https://brainly.com/question/14413095?referrer=searchResults

           

                                     

Similar questions