Math, asked by pp3286581, 1 month ago

Write Pythagorean triplet whose one member is 16.​

Answers

Answered by akshatsinghiva3557
0

Answer:

the triplets are 63 65 and 16

Step-by-step explanation:

Comparing the given integer:

Comparing the given integer:2m = 16

Comparing the given integer:2m = 16m = 8

Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):

Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -

Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1

Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63

Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63Find the value of (m{2} + 1):

Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63Find the value of (m{2} + 1):(m{2}+1) + 1) = 8{2} +1

Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63Find the value of (m{2} + 1):(m{2}+1) + 1) = 8{2} +1m{2} +1 = 64+1 =

Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63Find the value of (m{2} + 1):(m{2}+1) + 1) = 8{2} +1m{2} +1 = 64+1 =(m{2} + 1) = 65

Similar questions