Write Pythagorean triplet whose one member is 16.
Answers
Answered by
0
Answer:
the triplets are 63 65 and 16
Step-by-step explanation:
Comparing the given integer:
Comparing the given integer:2m = 16
Comparing the given integer:2m = 16m = 8
Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):
Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -
Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1
Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63
Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63Find the value of (m{2} + 1):
Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63Find the value of (m{2} + 1):(m{2}+1) + 1) = 8{2} +1
Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63Find the value of (m{2} + 1):(m{2}+1) + 1) = 8{2} +1m{2} +1 = 64+1 =
Comparing the given integer:2m = 16m = 8Find the value of (m{2} − 1):(m{2} − 1) = 8{2} _ 1 -(m2) - 1) = 64-1(m²) - 1) = 63Find the value of (m{2} + 1):(m{2}+1) + 1) = 8{2} +1m{2} +1 = 64+1 =(m{2} + 1) = 65
Similar questions