Write Roman numerals CDXLIX in Arabic numerals
(a) 569
(b)
449
(c) 549
(d) 469
Answers
Answer:
Given
m−5
2m
2
−3m+10
Now (2m
2
−3m+10) can be written after dividing by (m−5) as
(2m
2
−3m+10)=((2m+7)×(m−5))+45
so 45 is remainder and (2m+7) is dividend.
Answer:
1 = I
2 = Ii
3 = III
4 = IV
5 = V
6 = VI
7 = VII
8 = VIII
9 = IX
10 = X
11 = XI
12 = XII
13 = XIII
14 = XIV
15 = XV
16 = XVI
17 = XVII
18 = XVIII
19 = XIX
20 = XX
21 = XXI
22 = XXII
23 = XXIII
24 = XXIV
25 = XXV
26 = XXVI
27 = XXVII
28 = XXVIII
29 = XXIX
30 = XXX
31 = XXXI
32 = XXXII
33 = XXXIII
34 = XXXIV
35 = XXXV
36 = XXXVI
37 = XXXVII
38 = XXXVIII
39 = XXXIX
40 = XL
41 = XLI
42 = XLII
43 = XLIII
44 = XLIV
45 = XLV
46 = XLVI
47 = XLVII
48 = XLVIII
49 = XLIX
50 = L
51 = LI
52 = LII
53 = LIII
54 = LIV
55 = LV
56 = LVI
57 = LVII
58 = LVIII
59 = LIX
60 = LX
61 = LXI
62 = LXII
63 = LXIII
64 = LXIV
65 = LXV
66 = LXVI
67 = LXVII
68 = LXVIII
69 = LXIX
70 = LXX
71 = LXXI
72 = LXXII
73 = LXXIII
74 = LXXIV
75 = LXXV
76 = LXXVI
77 = LXXVII
78 = LXXVIII
79 = LXXIX
80 = LXXX
81 = LXXXI
82 = LXXXII
83 = LXXXIII
84 = LXXXIV
85 = LXXXV
86 = LXXXVI
87 = LXXXVII
88 = LXXXVIII
89 = LXXXIX
90 = XC
91 = XCI
92 = XCII
93 = XCIII
94 = XCIV
95 = XCV
96 = XCVI
97 = XCVII
98 = XCVIII
99 = XCIX
100 = C
101 = CI
102 = CII
103 = CIII
104 = CIV
105 = CV
106 = CVI
107 = CVII
108 = CVIII
109 = CIX
110 = CX
111 = CXI
112 = CXII
113 = CXIII
114 = CXIV
115 = CXV
116 = CXVI
117 = CXVII
118 = CXVIII
119 = CXIX
120 = CXX
121 = CXXI
122 = CXXII
123 = CXXIII
124 = CXXIV
125 = CXXV
126 = CXXVI
127 = CXXVII
128 = CXXVIII
129 = CXXIX
130 = CXXX
131 = CXXXI
132 = CXXXII
133 = CXXXIII