Science, asked by itzcutesehaj43, 1 month ago

write short note on environment ?

Answers

Answered by Giransh
0

Answer:

Environment is the nature and surroundings in which all plants, animals, humans and other living beings live and operate. ... It includes sunlight, atmosphere, land, water, plants, animals, sea life, minerals, different species and everything that occurs naturally on earth.

Answered by aditya541677
0

Answer:

\large\underline{\sf{Solution-}}

Solution−

Given to differentiate

\begin{gathered}\rm \: {sin}^{ - 1}(2x \sqrt{1 - {x}^{2} }) \: w.r.t \: \: {sin}^{ - 1}x \\ \end{gathered}

sin

−1

(2x

1−x

2

)w.r.tsin

−1

x

Let assume that

\begin{gathered}\rm \: u \: = \: {sin}^{ - 1}(2x \sqrt{1 - {x}^{2} }) \: \\ \end{gathered}

u=sin

−1

(2x

1−x

2

)

and

\begin{gathered}\rm \: v = {sin}^{ - 1}x \\ \end{gathered}

v=sin

−1

x

Now, Consider

\begin{gathered}\rm \: u \: = \: {sin}^{ - 1}(2x \sqrt{1 - {x}^{2} }) \: \\ \end{gathered}

u=sin

−1

(2x

1−x

2

)

Let we substitute,

\begin{gathered}\rm \: x = sin \theta \: \\ \end{gathered}

x=sinθ

So, above expression can be rewritten as

\begin{gathered}\rm \: u = {sin}^{ - 1}(2sin\theta \sqrt{1 - {sin}^{2}\theta } ) \\ \end{gathered}

u=sin

−1

(2sinθ

1−sin

2

θ

)

\begin{gathered}\rm \: u = {sin}^{ - 1}(2sin\theta \sqrt{{cos}^{2}\theta } ) \\ \end{gathered}

u=sin

−1

(2sinθ

cos

2

θ

)

\begin{gathered}\rm \: u = {sin}^{ - 1}(2sin\theta \: cos\theta ) \\ \end{gathered}

u=sin

−1

(2sinθcosθ)

\begin{gathered}\rm \: u = {sin}^{ - 1}(sin2\theta ) \\ \end{gathered}

u=sin

−1

(sin2θ)

Given that,

\begin{gathered}\rm \: \dfrac{1}{ \sqrt{2} } < x < 1 \\ \end{gathered}

2

1

<x<1

\begin{gathered}\rm \: \dfrac{1}{ \sqrt{2} } < sin\theta < 1 \\ \end{gathered}

2

1

<sinθ<1

\begin{gathered}\rm\implies \:\dfrac{\pi}{4} < \theta < \dfrac{\pi}{2} \\ \end{gathered}

4

π

<θ<

2

π

\begin{gathered}\rm\implies \:\dfrac{\pi}{2} < 2 \theta < \pi \\ \end{gathered}

2

π

<2θ<π

\begin{gathered}\rm\implies \: - \pi < - 2 \theta < - \dfrac{\pi}{2} \\ \end{gathered}

⟹−π<−2θ<−

2

π

\begin{gathered}\rm\implies \: \pi- \pi < \pi - 2 \theta < \pi - \dfrac{\pi}{2} \\ \end{gathered}

⟹π−π<π−2θ<π−

2

π

\begin{gathered}\rm\implies \: 0 < \pi - 2 \theta < \dfrac{\pi}{2} \\ \end{gathered}

⟹0<π−2θ<

2

π

So, above expression

\begin{gathered}\rm \: u = {sin}^{ - 1}(sin2\theta ) \\ \end{gathered}

u=sin

−1

(sin2θ)

can be rewritten as

\begin{gathered}\rm \: u = {sin}^{ - 1}[sin(\pi - 2\theta )] \\ \end{gathered}

u=sin

−1

[sin(π−2θ)]

We know,

\begin{gathered}\boxed{\sf{ \:{sin}^{ - 1}(sinx) = x \: \: if -\dfrac{\pi }{2} \leqslant x \leqslant \dfrac{\pi }{2} \: }} \\ \end{gathered}

sin

−1

(sinx)= x if−

2

π

⩽x⩽

2

π

So, using this, we get

\begin{gathered}\rm \: u = \pi - 2\theta \\ \end{gathered}

u=π−2θ

\begin{gathered}\rm \: u = \pi - 2{sin}^{ - 1}x \\ \end{gathered}

u=π−2sin

−1

x

\begin{gathered}\rm \: [ \: \because \: x = sin\theta \: \rm\implies \:\theta = {sin}^{ - 1}x \: ] \\ \end{gathered}

[∵x=sinθ⟹θ=sin

−1

x]

On differentiating w. r. t. x, we get

\begin{gathered}\rm \: \dfrac{d}{dx}u \: = \: \dfrac{d}{dx}(\pi - 2{sin}^{ - 1}x) \\ \end{gathered}

dx

d

u=

dx

d

(π−2sin

−1

x)

\begin{gathered}\rm \: \dfrac{du}{dx} \: = \: 0 - \dfrac{2}{ \sqrt{1 - {x}^{2} } } \\ \end{gathered}

dx

du

=0−

1−x

2

2

\begin{gathered}\rm\implies \:\boxed{\sf{ \: \: \rm \: \dfrac{du}{dx} \: = \: - \dfrac{2}{ \sqrt{1 - {x}^{2} } } \: }} \\ \end{gathered}

dx

du

=−

1−x

2

2

Now, Consider

\begin{gathered}\rm \:v \: = \: {sin}^{ - 1}x \\ \end{gathered}

v=sin

−1

x

On differentiating both sides w. r. t. x, we get

\begin{gathered}\rm \: \dfrac{d}{dx}v \: = \: \dfrac{d}{dx}{sin}^{ - 1}x \\ \end{gathered}

dx

d

v=

dx

d

sin

−1

x

\begin{gathered}\rm \: \dfrac{dv}{dx} \: = \: \dfrac{1}{ \sqrt{1 - {x}^{2} } } \\ \end{gathered}

dx

dv

=

1−x

2

1

Now, Consider

\begin{gathered}\rm \: \dfrac{du}{dv} \\ \end{gathered}

dv

du

\begin{gathered}\rm \: = \: \dfrac{du}{dx} \div \dfrac{dv}{dx} \\ \end{gathered}

=

dx

du

÷

dx

dv

\begin{gathered}\rm \: = \: - \: \dfrac{2}{ \sqrt{1 - {x}^{2} } } \div \dfrac{1}{ \sqrt{1 - {x}^{2} } } \\ \end{gathered}

=−

1−x

2

2

÷

1−x

2

1

\begin{gathered}\rm \: = \: - 2 \\ \end{gathered}

=−2

Hence,

\begin{gathered}\rm\implies \:\rm \: \dfrac{du}{dv} \: = \: - \: 2 \\ \end{gathered}

dv

du

=−2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = {sin}^{ - 1}(sinx) & \sf x \: \: if -\dfrac{\pi }{2} \leqslant x \leqslant \dfrac{\pi }{2}\\ \\ \sf y = {cos}^{ - 1}(cosx) & \sf x \: \: if \: 0 \leqslant y \leqslant \pi \\ \\ \sf y = {tan}^{ - 1}(tanx) & \sf x \: \: if \: - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}\\ \\ \sf y = {cosec}^{ - 1}(cosecx) & \sf x \: \: if \: x \: \in \: \bigg[ - \dfrac{\pi}{2}, \: \dfrac{\pi }{2}\bigg] - \{0 \}\\ \\ \sf y = {sec}^{ - 1}(secx) & \sf x \: \: if \: x \: \in \: [0, \: \pi] \: - \: \bigg\{\dfrac{\pi }{2}\bigg\}\\ \\ \sf y = {cot}^{ - 1}(cotx) & \sf x \: \: if \: \: \in \: \bigg( - \dfrac{\pi }{2} , \dfrac{\pi }{2}\bigg) - \{0 \} \end{array}} \\ \end{gathered} \\\end{gathered}

Function

y= sin

−1

(sinx)

y= cos

−1

y= (cosx)

y= tan

−1

(tanx)

y= cosec

−1

(cosecx)

sec

Similar questions