Math, asked by tanishagulve, 5 months ago

write sum of zeroes an product of zeroes of the following polynomial 5x²-x-4​

Answers

Answered by Anonymous
2

Question:-

\sf{Write\:the\:sum\:and\:product\:of\:zeroes\:of\:the\:polynomial\:5x^2-x-4}

Solution:-

\sf{p(x) = 5x^2 - x - 4}

= \sf{By\:Splitting\:the\:middle\:term}

= \sf{5x^2 - 5x + 4x - 4 = 0}

= \sf{5x(x-1) + 4(x-1) = 0}

= \sf{(x-1)(5x+4) = 0}

Either,

= \sf{x - 1 = 0}

=> \sf{x = 1}

Or,

= \sf{5x + 4 = 0}

=> \sf{5x = -4}

=> \sf{x = \dfrac{-4}{5}}

\sf{\therefore The\: zeroes\: of \:the\:polynomial\:5x^2-x-4\:are\:1 \:and \: \dfrac{-4}{5}}

\sf{Let\: \alpha = 1\: and \: \beta = \dfrac{-4}{5}}

Therefore,

\sf{Product\:of\:Zeroes = \alpha\beta = 1\times \dfrac{-4}{5} = \dfrac{-4}{5}}

\sf{Sum\:of\:Zeroes = \alpha + \beta = 1 + \dfrac{-4}{5}}

= \sf{\dfrac{5-4}{5} = \dfrac{1}{5}}

Verification:-

\sf{Sum\:of\:zeroes = \dfrac{Coefficient\:of\:x}{Coefficient\:of\:x^2}}

= \sf{\dfrac{1}{5} = \dfrac{1}{5}\:[Verified]}

\sf{Product\:of\:zeroes = \dfrac{Constant\:term}{Coefficient\:of\:x^2}}

= \sf{\dfrac{-4}{5} = \dfrac{-4}{5}\: [Verified]}

Similar questions
Art, 2 months ago