Math, asked by Sahan677, 5 hours ago

Write  \displaystyle \sf \lim_{n \to \infty} \sum \limits_{k = 1}^{n} \bigg( - 1 + k \frac{3}{n}\bigg)^{4} \frac{3}{n} as a definite integral.​​

Answers

Answered by BrainlyFlash
2

{\huge{\star{\underbrace{\tt{\red{Answer}}}}}}{\huge{\star}}

∫-12x4dx = x5/5-12 = 32/5 + 1/5 = 33/5.

n → ∞

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle \sf \lim_{n \to \infty} \sum \limits_{k = 1}^{n} \bigg( - 1 + k \frac{3}{n}\bigg)^{4} \frac{3}{n}

can be rewritten as

\rm \:  =  \:3 \displaystyle \sf \lim_{n \to \infty} \sum \limits_{k = 1}^{n} \bigg( - 1 + 3\frac{k}{n}\bigg)^{4} \frac{1}{n}

Now, using Limit as sum of definite integrals

\rm :\longmapsto\:\dfrac{k}{n} \: changes \: to  \: x

\rm :\longmapsto\:\dfrac{1}{n} \: changes \: to  \: dx

\rm :\longmapsto\:\displaystyle \sf \lim_{n \to \infty} \sum   \: changes \: to \:  \int

\rm :\longmapsto\: \: lower \: limit \: a \:  =  \: \displaystyle \sf \lim_{n \to \infty}\frac{1}{n} = 0

\rm :\longmapsto\: \: upper \: limit \: b \:   = \: \displaystyle \sf \lim_{n \to \infty}\frac{n}{n} =  \: 1

So, given expression can be rewritten as

\rm \:  =  \:3 \displaystyle \sf \int \limits_{0}^{1} \bigg( - 1 + 3x\bigg)^{4}  \: dx

can be rewritten as

\rm \:  =  \:3 \displaystyle \sf \int \limits_{0}^{1} \bigg(3x - 1\bigg)^{4}  \: dx

We know,

\boxed{\tt{  \int \:  {(ax + b)}^{n}dx =  \frac{ {(ax + b)}^{n + 1} }{a(n + 1)}  + c}}

So, using this, we get

\rm \:  =  \: 3\bigg[\dfrac{ {(3x - 1)}^{4 + 1} }{3(4 + 1)} \bigg]_{0}^{1}

\rm \:  =  \: \bigg[\dfrac{ {(3x - 1)}^{5} }{5} \bigg]_{0}^{1}

\rm \:  =  \: \dfrac{1}{5}[ {(3 - 1)}^{5} -  {(0 - 1)}^{5} ]

\rm \:  =  \: \dfrac{1}{5}[ {(2)}^{5} -  {( - 1)}^{5} ]

\rm \:  =  \: \dfrac{1}{5}[ 32 + 1 ]

\rm \:  =  \: \dfrac{33}{5}

Hence,

\rm\implies \:\boxed{\tt{ \displaystyle \sf \lim_{n \to \infty} \sum \limits_{k = 1}^{n} \bigg( - 1 + k \frac{3}{n}\bigg)^{4} \frac{3}{n} =  \frac{33}{5} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions